1. The ISO has its own system of preferred metric limits and fits.



Write Comment

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->Idiom of By fits and starts....
QA->Whichcountry’s agreement on climate change entered into force, marking the firsttime that governments have agreed legally binding limits to global temperaturerise?....
QA->A Hook’s joint in a automobile transmission system is preferred when the driving and driven shafts are:....
QA->Which country’s central bank bought 200 metric tons of gold from the International Monetary Fund last month, in the first major move by a major central bank to diversify its foreign-exchange reserves?....
QA->Hackers who breaks security of a system for non malicious reasons like testing their own system are called _____?....
MCQ-> Read the passage carefully and answer the questions givenMore and more companies, government agencies, educational institutions and philanthropic organisations are today in the grip of a new phenomenon: ‘metric fixation’. The key components of metric fixation are the belief that it is possible - and desirable - to replace professional judgment (acquired through personal experience and talent) with numerical indicators of comparative performance based upon standardised data (metrics); and that the best way to motivate people within these organisations is by attaching rewards and penalties to their measured performance. The rewards can be monetary, in the form of pay for performance, say, or reputational, in the form of college rankings, hospital ratings, surgical report cards and so on. But the most dramatic negative effect of metric fixation is its propensity to incentivise gaming: that is, encouraging professionals to maximise the metrics in ways that are at odds with the larger purpose of the organisation. If the rate of major crimes in a district becomes the metric according to which police officers are promoted, then some officers will respond by simply not recording crimes or downgrading them from major offences to misdemeanours. Or take the case of surgeons. When the metrics of success and failure are made public - affecting their reputation and income - some surgeons will improve their metric scores by refusing to operate on patients with more complex problems, whose surgical outcomes are more likely to be negative. Who suffers? The patients who don’t get operated upon.When reward is tied to measured performance, metric fixation invites just this sort of gaming. But metric fixation also leads to a variety of more subtle unintended negative consequences. These include goal displacement, which comes in many varieties: when performance is judged by a few measures, and the stakes are high (keeping one’s job, getting a pay rise or raising the stock price at the time that stock options are vested), people focus on satisfying those measures - often at the expense of other, more important organisational goals that are not measured. The best-known example is ‘teaching to the test’, a widespread phenomenon that has distorted primary and secondary education in the United States since the adoption of the No Child Left Behind Act of 2001.Short-termism is another negative. Measured performance encourages what the US sociologist Robert K Merton in 1936 called ‘the imperious immediacy of interests … where the actor’s paramount concern with the foreseen immediate consequences excludes consideration of further or other consequences’. In short, advancing short-term goals at the expense of long-range considerations. This problem is endemic to publicly traded corporations that sacrifice long-term research and development, and the development of their staff, to the perceived imperatives of the quarterly report.To the debit side of the ledger must also be added the transactional costs of metrics: the expenditure of employee time by those tasked with compiling and processing the metrics in the first place - not to mention the time required to actually read them. . . .All of the following can be a possible feature of the No Child Left Behind Act of 2001, EXCEPT:
 ....
MCQ-> The current debate on intellectual property rights (IPRs) raises a number of important issues concerning the strategy and policies for building a more dynamic national agricultural research system, the relative roles of public and private sectors, and the role of agribusiness multinational corporations (MNCs). This debate has been stimulated by the international agreement on Trade Related Intellectual Property Rights (TRIPs), negotiated as part of the Uruguay Round. TRIPs, for the first time, seeks to bring innovations in agricultural technology under a new worldwide IPR regime. The agribusiness MNCs (along with pharmaceutical companies) played a leading part in lobbying for such a regime during the Uruguay Round negotiations. The argument was that incentives are necessary to stimulate innovations, and that this calls for a system of patents which gives innovators the sole right to use (or sell/lease the right to use) their innovations for a specified period and protects them against unauthorised copying or use. With strong support of their national governments, they were influential in shaping the agreement on TRIPs, which eventually emerged from the Uruguay Round. The current debate on TRIPs in India - as indeed elsewhere - echoes wider concerns about ‘privatisation’ of research and allowing a free field for MNCs in the sphere of biotechnology and agriculture. The agribusiness corporations, and those with unbounded faith in the power of science to overcome all likely problems, point to the vast potential that new technology holds for solving the problems of hunger, malnutrition and poverty in the world. The exploitation of this potential should be encouraged and this is best done by the private sector for which patents are essential. Some, who do not necessarily accept this optimism, argue that fears of MNC domination are exaggerated and that farmers will accept their products only if they decisively outperform the available alternatives. Those who argue against agreeing to introduce an IPR regime in agriculture and encouraging private sector research are apprehensive that this will work to the disadvantage of farmers by making them more and more dependent on monopolistic MNCs. A different, though related apprehension is that extensive use of hybrids and genetically engineered new varieties might increase the vulnerability of agriculture to outbreaks of pests and diseases. The larger, longer-term consequences of reduced biodiversity that may follow from the use of specially bred varieties are also another cause for concern. Moreover, corporations, driven by the profit motive, will necessarily tend to underplay, if not ignore, potential adverse consequences, especially those which are unknown and which may manifest themselves only over a relatively long period. On the other hand, high-pressure advertising and aggressive sales campaigns by private companies can seduce farmers into accepting varieties without being aware of potential adverse effects and the possibility of disastrous consequences for their livelihood if these varieties happen to fail. There is no provision under the laws, as they now exist, for compensating users against such eventualities. Excessive preoccupation with seeds and seed material has obscured other important issues involved in reviewing the research policy. We need to remind ourselves that improved varieties by themselves are not sufficient for sustained growth of yields. in our own experience, some of the early high yielding varieties (HYVs) of rice and wheat were found susceptible to widespread pest attacks; and some had problems of grain quality. Further research was necessary to solve these problems. This largely successful research was almost entirely done in public research institutions. Of course, it could in principle have been done by private companies, but whether they choose to do so depends crucially on the extent of the loss in market for their original introductions on account of the above factors and whether the companies are financially strong enough to absorb the ‘losses’, invest in research to correct the deficiencies and recover the lost market. Public research, which is not driven by profit, is better placed to take corrective action. Research for improving common pool resource management, maintaining ecological health and ensuring sustainability is both critical and also demanding in terms of technological challenge and resource requirements. As such research is crucial to the impact of new varieties, chemicals and equipment in the farmer’s field, private companies should be interested in such research. But their primary interest is in the sale of seed materials, chemicals, equipment and other inputs produced by them. Knowledge and techniques for resource management are not ‘marketable’ in the same way as those inputs. Their application to land, water and forests has a long gestation and their efficacy depends on resolving difficult problems such as designing institutions for proper and equitable management of common pool resources. Public or quasi-public research institutions informed by broader, long-term concerns can only do such work. The public sector must therefore continue to play a major role in the national research system. It is both wrong and misleading to pose the problem in terms of public sector versus private sector or of privatisation of research. We need to address problems likely to arise on account of the public-private sector complementarity, and ensure that the public research system performs efficiently. Complementarity between various elements of research raises several issues in implementing an IPR regime. Private companies do not produce new varieties and inputs entirely as a result of their own research. Almost all technological improvement is based on knowledge and experience accumulated from the past, and the results of basic and applied research in public and quasi-public institutions (universities, research organisations). Moreover, as is increasingly recognised, accumulated stock of knowledge does not reside only in the scientific community and its academic publications, but is also widely diffused in traditions and folk knowledge of local communities all over. The deciphering of the structure and functioning of DNA forms the basis of much of modern biotechnology. But this fundamental breakthrough is a ‘public good’ freely accessible in the public domain and usable free of any charge. Various techniques developed using that knowledge can however be, and are, patented for private profit. Similarly, private corporations draw extensively, and without any charge, on germplasm available in varieties of plants species (neem and turmeric are by now famous examples). Publicly funded gene banks as well as new varieties bred by public sector research stations can also be used freely by private enterprises for developing their own varieties and seek patent protection for them. Should private breeders be allowed free use of basic scientific discoveries? Should the repositories of traditional knowledge and germplasm be collected which are maintained and improved by publicly funded organisations? Or should users be made to pay for such use? If they are to pay, what should be the basis of compensation? Should the compensation be for individuals or (or communities/institutions to which they belong? Should individual institutions be given the right of patenting their innovations? These are some of the important issues that deserve more attention than they now get and need serious detailed study to evolve reasonably satisfactory, fair and workable solutions. Finally, the tendency to equate the public sector with the government is wrong. The public space is much wider than government departments and includes co- operatives, universities, public trusts and a variety of non-governmental organisations (NGOs). Giving greater autonomy to research organisations from government control and giving non- government public institutions the space and resources to play a larger, more effective role in research, is therefore an issue of direct relevance in restructuring the public research system.Which one of the following statements describes an important issue, or important issues, not being raised in the context of the current debate on IPRs?
 ....
MCQ->The ISO has its own system of preferred metric limits and fits.....
MCQ-> India is rushing headlong toward economic success and modernisation, counting on high- tech industries such as information technology and biotechnology to propel the nation toprosperity. India’s recent announcement that it would no longer produce unlicensed inexpensive generic pharmaceuticals bowed to the realities of the World TradeOrganisation while at the same time challenging the domestic drug industry to compete with the multinational firms. Unfortunately, its weak higher education sector constitutes the Achilles’ Heel of this strategy. Its systematic disinvestment in higher education inrecent years has yielded neither world-class research nor very many highly trained scholars, scientists, or managers to sustain high-tech development. India’s main competitors especially China but also Singapore, Taiwan, and South Korea — are investing in large and differentiated higher education systems. They are providingaccess to large number of students at the bottom of the academic system while at the same time building some research-based universities that are able to compete with theworld’s best institutions. The recent London Times Higher Education Supplement ranking of the world’s top 200 universities included three in China, three in Hong Kong,three in South Korea, one in Taiwan, and one in India (an Indian Institute of Technology at number 41.— the specific campus was not specified). These countries are positioningthemselves for leadership in the knowledge-based economies of the coming era. There was a time when countries could achieve economic success with cheap labour andlow-tech manufacturing. Low wages still help, but contemporary large-scale development requires a sophisticated and at least partly knowledge-based economy.India has chosen that path, but will find a major stumbling block in its university system. India has significant advantages in the 21st century knowledge race. It has a large high ereducation sector — the third largest in the world in student numbers, after China andthe United States. It uses English as a primary language of higher education and research. It has a long academic tradition. Academic freedom is respected. There are asmall number of high quality institutions, departments, and centres that can form the basis of quality sector in higher education. The fact that the States, rather than the Central Government, exercise major responsibility for higher education creates a rather cumbersome structure, but the system allows for a variety of policies and approaches. Yet the weaknesses far outweigh the strengths. India educates approximately 10 per cent of its young people in higher education compared with more than half in the major industrialised countries and 15 per cent in China. Almost all of the world’s academic systems resemble a pyramid, with a small high quality tier at the top and a massive sector at the bottom. India has a tiny top tier. None of its universities occupies a solid position at the top. A few of the best universities have some excellent departments and centres, and there is a small number of outstanding undergraduate colleges. The University Grants Commission’s recent major support of five universities to build on their recognised strength is a step toward recognising a differentiated academic system and fostering excellence. At present, the world-class institutions are mainly limited to the Indian Institutes of Technology (IITs), the Indian Institutes of Management (IIMs) and perhaps a few others such as the All India Institute of Medical Sciences and the Tata Institute of Fundamental Research. These institutions, combined, enroll well under 1 percent of the student population. India’s colleges and universities, with just a few exceptions, have become large, under-funded, ungovernable institutions. At many of them, politics has intruded into campus life, influencing academic appointments and decisions across levels. Under-investment in libraries, information technology, laboratories, and classrooms makes it very difficult to provide top-quality instruction or engage in cutting-edge research.The rise in the number of part-time teachers and the freeze on new full-time appointments in many places have affected morale in the academic profession. The lackof accountability means that teaching and research performance is seldom measured. The system provides few incentives to perform. Bureaucratic inertia hampers change.Student unrest and occasional faculty agitation disrupt operations. Nevertheless, with a semblance of normality, faculty administrators are. able to provide teaching, coordinate examinations, and award degrees. Even the small top tier of higher education faces serious problems. Many IIT graduates,well trained in technology, have chosen not to contribute their skills to the burgeoning technology sector in India. Perhaps half leave the country immediately upon graduation to pursue advanced study abroad — and most do not return. A stunning 86 per cent of students in science and technology fields from India who obtain degrees in the United States do not return home immediately following their study. Another significant group, of about 30 per cent, decides to earn MBAs in India because local salaries are higher.—and are lost to science and technology.A corps of dedicated and able teachers work at the IlTs and IIMs, but the lure of jobs abroad and in the private sector make it increasingly difficult to lure the best and brightest to the academic profession.Few in India are thinking creatively about higher education. There is no field of higher education research. Those in government as well as academic leaders seem content to do the “same old thing.” Academic institutions and systems have become large and complex. They need good data, careful analysis, and creative ideas. In China, more than two-dozen higher education research centers, and several government agencies are involved in higher education policy.India has survived with an increasingly mediocre higher education system for decades.Now as India strives to compete in a globalized economy in areas that require highly trained professionals, the quality of higher education becomes increasingly important.India cannot build internationally recognized research-oriented universities overnight,but the country has the key elements in place to begin and sustain the process. India will need to create a dozen or more universities that can compete internationally to fully participate in the new world economy. Without these universities, India is destined to remain a scientific backwater.Which of the following ‘statement(s) is/are correct in the context of the given passage ? I. India has the third largest higher education sector in the world in student numbers. II. India is moving rapidly toward economic success and modernisation through high tech industries such as information technology and bitechonology to make the nation to prosperity. III. India’s systematic disinvestment in higher education in recent years has yielded world class research and many world class trained scholars, scientists to sustain high-tech development.....
MCQ-> Read the following passage carefully and answer the questions given below it. Certain words have been printed in ‘’bold’’ to help you locate them while answering some of the questions.The evolution of Bring Your Own Device (BYOD) trend has been as profound as it has been rapid. It represents the more visible sign that the boundaries between personal life and work life are blurring. The 9 a.m. - 5 p.m. model of working solely from office has become archaic and increasingly people are working extended hours from a range of locations. At the very heart of this evolution is the ability to access enterprise networks from anywhere and anytime. The concept of cloud computing serves effectively to extend the office out of office. The much heralded benefit of BYOD is greater productivity. However, recent research has suggested that this is the greatest myth of BYOD and the reality is that BYOD in practise poses new challenges that may outweigh the benefits. A worldwide commissioned by Fortinet choose to look at attitudes towards BYOD and security from the user’s point of view instead of the IT managers. Specifically the survey was conducted in 15 territories on a group of graduate employees in their early twenties because they represent the first generation to enter the workplace with an expectation of own device use. Moreover, they also represent tomorrow’s influences and decision markers. The survey findings reveals that for financial organizations, the decision to embrace BYOB is extremely dangerous. Larger organizations will have mature IT strategies and policies in place. But what about smaller financial business? They might not have such well developed strategies to protect confidential data. Crucially, within younger employee groups, 55% of the people share an expectation that they should be allowed to use their own devices in the workplace or for work purposes. With this expectation comes the very real risk that employees may consider contravening company policy banning the use of own devices. The threats posed by this level of subversion cannot be overstated. The survey casts doubt on the idea of BYOD leading to greater productivity by revealing the real reason people want to use their own devices. Only 26% of people in this age group cite efficiency as the reason they want to use their own devices, while 63% admit that the main reason is so they have access to their favourite applications. But with personal applications so close to hand, the risks to the business must surely include distraction and time wasting. To support this assumption 46% of people polled acknowledged time wasting as the greatest threat to the organization, while 42% citing greater exposure to theft or loss of confidential data. Clearly, from a user perspective there is great deal of contradiction surroundings BYOB and there exists an undercurrent of selfishness where users expect to use their own devices, but mostly for personal interest. They recognize the risks to the organization but are adamant that those risks are worth talking.According to the passage, for which of the following reasons did Fortinet conduct the survey on a group of graduate employees in their early twenties?A: As this group represents the future decision makers B: As this group represents the first generation who entered the workforce with a better understanding of sophisticated gadgets C: As this group represents the first generation to enter the workplace expecting that they can use their own devices for work purpose....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions