1. A Hook’s joint in a automobile transmission system is preferred when the driving and driven shafts are:

Answer: Non-parallel and intersecting

Reply

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->A Hook’s joint in a automobile transmission system is preferred when the driving and driven shafts are:....
QA->Which transmission unit is used to turn the driven shaft faster than the driving shaft?....
QA->The components of an automobile transmission system that facilitate the drive to turn at right angle are:....
QA->The type of gears used for transmitting power between two-non intersecting perpendicular shafts is :....
QA->Idiom of By hook or by crook....
MCQ-> The current debate on intellectual property rights (IPRs) raises a number of important issues concerning the strategy and policies for building a more dynamic national agricultural research system, the relative roles of public and private sectors, and the role of agribusiness multinational corporations (MNCs). This debate has been stimulated by the international agreement on Trade Related Intellectual Property Rights (TRIPs), negotiated as part of the Uruguay Round. TRIPs, for the first time, seeks to bring innovations in agricultural technology under a new worldwide IPR regime. The agribusiness MNCs (along with pharmaceutical companies) played a leading part in lobbying for such a regime during the Uruguay Round negotiations. The argument was that incentives are necessary to stimulate innovations, and that this calls for a system of patents which gives innovators the sole right to use (or sell/lease the right to use) their innovations for a specified period and protects them against unauthorised copying or use. With strong support of their national governments, they were influential in shaping the agreement on TRIPs, which eventually emerged from the Uruguay Round. The current debate on TRIPs in India - as indeed elsewhere - echoes wider concerns about ‘privatisation’ of research and allowing a free field for MNCs in the sphere of biotechnology and agriculture. The agribusiness corporations, and those with unbounded faith in the power of science to overcome all likely problems, point to the vast potential that new technology holds for solving the problems of hunger, malnutrition and poverty in the world. The exploitation of this potential should be encouraged and this is best done by the private sector for which patents are essential. Some, who do not necessarily accept this optimism, argue that fears of MNC domination are exaggerated and that farmers will accept their products only if they decisively outperform the available alternatives. Those who argue against agreeing to introduce an IPR regime in agriculture and encouraging private sector research are apprehensive that this will work to the disadvantage of farmers by making them more and more dependent on monopolistic MNCs. A different, though related apprehension is that extensive use of hybrids and genetically engineered new varieties might increase the vulnerability of agriculture to outbreaks of pests and diseases. The larger, longer-term consequences of reduced biodiversity that may follow from the use of specially bred varieties are also another cause for concern. Moreover, corporations, driven by the profit motive, will necessarily tend to underplay, if not ignore, potential adverse consequences, especially those which are unknown and which may manifest themselves only over a relatively long period. On the other hand, high-pressure advertising and aggressive sales campaigns by private companies can seduce farmers into accepting varieties without being aware of potential adverse effects and the possibility of disastrous consequences for their livelihood if these varieties happen to fail. There is no provision under the laws, as they now exist, for compensating users against such eventualities. Excessive preoccupation with seeds and seed material has obscured other important issues involved in reviewing the research policy. We need to remind ourselves that improved varieties by themselves are not sufficient for sustained growth of yields. in our own experience, some of the early high yielding varieties (HYVs) of rice and wheat were found susceptible to widespread pest attacks; and some had problems of grain quality. Further research was necessary to solve these problems. This largely successful research was almost entirely done in public research institutions. Of course, it could in principle have been done by private companies, but whether they choose to do so depends crucially on the extent of the loss in market for their original introductions on account of the above factors and whether the companies are financially strong enough to absorb the ‘losses’, invest in research to correct the deficiencies and recover the lost market. Public research, which is not driven by profit, is better placed to take corrective action. Research for improving common pool resource management, maintaining ecological health and ensuring sustainability is both critical and also demanding in terms of technological challenge and resource requirements. As such research is crucial to the impact of new varieties, chemicals and equipment in the farmer’s field, private companies should be interested in such research. But their primary interest is in the sale of seed materials, chemicals, equipment and other inputs produced by them. Knowledge and techniques for resource management are not ‘marketable’ in the same way as those inputs. Their application to land, water and forests has a long gestation and their efficacy depends on resolving difficult problems such as designing institutions for proper and equitable management of common pool resources. Public or quasi-public research institutions informed by broader, long-term concerns can only do such work. The public sector must therefore continue to play a major role in the national research system. It is both wrong and misleading to pose the problem in terms of public sector versus private sector or of privatisation of research. We need to address problems likely to arise on account of the public-private sector complementarity, and ensure that the public research system performs efficiently. Complementarity between various elements of research raises several issues in implementing an IPR regime. Private companies do not produce new varieties and inputs entirely as a result of their own research. Almost all technological improvement is based on knowledge and experience accumulated from the past, and the results of basic and applied research in public and quasi-public institutions (universities, research organisations). Moreover, as is increasingly recognised, accumulated stock of knowledge does not reside only in the scientific community and its academic publications, but is also widely diffused in traditions and folk knowledge of local communities all over. The deciphering of the structure and functioning of DNA forms the basis of much of modern biotechnology. But this fundamental breakthrough is a ‘public good’ freely accessible in the public domain and usable free of any charge. Various techniques developed using that knowledge can however be, and are, patented for private profit. Similarly, private corporations draw extensively, and without any charge, on germplasm available in varieties of plants species (neem and turmeric are by now famous examples). Publicly funded gene banks as well as new varieties bred by public sector research stations can also be used freely by private enterprises for developing their own varieties and seek patent protection for them. Should private breeders be allowed free use of basic scientific discoveries? Should the repositories of traditional knowledge and germplasm be collected which are maintained and improved by publicly funded organisations? Or should users be made to pay for such use? If they are to pay, what should be the basis of compensation? Should the compensation be for individuals or (or communities/institutions to which they belong? Should individual institutions be given the right of patenting their innovations? These are some of the important issues that deserve more attention than they now get and need serious detailed study to evolve reasonably satisfactory, fair and workable solutions. Finally, the tendency to equate the public sector with the government is wrong. The public space is much wider than government departments and includes co- operatives, universities, public trusts and a variety of non-governmental organisations (NGOs). Giving greater autonomy to research organisations from government control and giving non- government public institutions the space and resources to play a larger, more effective role in research, is therefore an issue of direct relevance in restructuring the public research system.Which one of the following statements describes an important issue, or important issues, not being raised in the context of the current debate on IPRs?
 ...
MCQ-> The teaching and transmission of North Indian classical music is, and long has been, achieved by largely oral means. The raga and its structure, the often breathtaking intricacies of talc, or rhythm, and the incarnation of raga and tala as bandish or composition, are passed thus, between guru and shishya by word of mouth and direct demonstration, with no printed sheet of notated music, as it were, acting as a go-between. Saussure’s conception of language as a communication between addresser and addressee is given, in this model, a further instance, and a new, exotic complexity and glamour.These days, especially with the middle class having entered the domain of classical music and playing not a small part ensuring the continuation of this ancient tradition, the tape recorder serves as a handy technological slave and preserves, from oblivion, the vanishing, elusive moment of oral transmission. Hoary gurus, too, have seen the advantage of this device, and increasingly use it as an aid to instructing their pupils; in place of the shawls and other traditional objects that used to pass from shishya to guru in the past, as a token of the regard of the former for the latter, it is not unusual, today, to see cassettes changing hands.Part of my education in North Indian classical music was conducted via this rather ugly but beneficial rectangle of plastic, which I carried with me to England when I was a undergraduate. Once cassette had stored in it various talas played upon the tabla, at various tempos, by my music teacher’s brother-in law, Hazarilalii, who was a teacher of Kathak dance, as well as a singer and a tabla player. This was a work of great patience and prescience, a one-and-a-half hour performance without my immediate point or purpose, but intended for some delayed future moment who I’d practise the talas solitarily.This repeated playing our of the rhythmic cycles on the tabla was inflected by the noises-an hate auto driver blowing a horn; the sound bf overbearing pigeons that were such a nuisance on the banister; even the cry of a kulfi seller in summer —entering from the balcony of the third foot flat we occupied in those days, in a lane in a Bombay suburb, before we left the city for good. These sounds, in turn, would invade, hesitantly, the ebb and flow of silence inside the artificially heated room, in a borough of West London, in which I used to live as an undergraduate. There, in the trapped dust, silence and heat, the theka of the tabla, qualified by the imminent but intermittent presence of the Bombay subrub, would come to life again. A few years later, the tabla and, in the background, the pigeons and the itinerant kulfi seller, would inhabit a small graduate room in Oxford.cThe tape recorder, though, remains an extension of the oral transmission of music, rather than a replacement of it. And the oral transmission of North Indian classical music remains, almost uniquely, testament to the fact that the human brain can absorb, remember and reproduces structures of great complexity and sophistication without the help of the hieroglyph or written mark or a system of notation. I remember my surprise on discovering the Hazarilalji- who had mastered Kathak dance, tala and North Indian classical music, and who used to narrate to me, occasionally, compositions meant for dance that were grant and intricate in their verbal prosody, architecture and rhythmic complexity- was near illustrate and had barely learnt to write his name in large and clumsy letters.Of course, attempts have been made, throughout the 20th century, to formally codify and even notate this music, and institutions set up and degrees created, specifically to educate students in this “scientific” and codified manner. Paradoxically, however, this style of teaching has produced no noteworthy student or performer; the most creative musicians still emerge from the guru-shishya relationship, their understanding of music developed by oral communication.The fact that North Indian classical music emanates from, and has evolved through, oral culture, means that this music has a significantly different aesthetic, aw that this aesthetic has a different politics, from that of Western classical music) A piece of music in the Western tradition, at least in its most characteristic and popular conception, originates in its composer, and the connection between the two, between composer and the piece of music, is relatively unambiguous precisely because the composer writes down, in notation, his composition, as a poet might write down and publish his poem. However far the printed sheet of notated music might travel thus from the composer, it still remains his property; and the notion of property remains at the heart of the Western conception of “genius”, which derives from the Latin gignere or ‘to beget’.The genius in Western classical music is, then, the originator, begetter and owner of his work the printed, notated sheet testifying to his authority over his product and his power, not only of expression or imagination, but of origination. The conductor is a custodian and guardian of this property. IS it an accident that Mandelstam, in his notebooks, compares — celebratorily—the conductor’s baton to a policeman’s, saying all the music of the orchestra lies mute within it, waiting for its first movement to release it into the auditorium?The raga — transmitted through oral means — is, in a sense, no one’s property; it is not easy to pin down its source, or to know exactly where its provenance or origin lies. Unlike the Western classical tradition, where the composer begets his piece, notates it and stamps it with his ownership and remains, in effect, larger than, or the father of, his work, in the North India classical tradition, the raga — unconfined to a single incarnation, composer or performer — remains necessarily greater than the artiste who invokes it.This leads to a very different politics of interpretation and valuation, to an aesthetic that privileges the evanescent moment of performance and invocation over the controlling authority of genius and the permanent record. It is a tradition, thus, that would appear to value the performer, as medium, more highly than the composer who presumes to originate what, effectively, cannot be originated in a single person — because the raga is the inheritance of a culture.The author’s contention that the notion of property lies at the heart of the Western conception of genius is best indicated by which one of the following?
 ...
MCQ-> Read passage carefully. Answer the questions by selecting the most appropriate option (with reference to the passage). PASSAGE 4While majoring in computer science isn't a requirement to participate in the Second Machine Age, what skills do liberal arts graduates specifically possess to contribute to this brave new world? Another major oversight in the debate has been the failure to appreciate that a good liberal arts education teaches many skills that are not only valuable to the general world of business, but are in fact vital to innovating the next wave of breakthrough tech-driven products and services. Many defenses of the value of a liberal arts education have been launched, of course, with the emphasis being on the acquisition of fundamental thinking and communication skills, such as critical thinking, logical argumentation, and good communication skills. One aspect of liberal arts education that has been strangely neglected in the discussion is the fact that the humanities and social sciences are devoted to the study of human nature and the nature of our communities and larger societies. Students who pursue degrees in the liberal arts disciplines tend to be particularly motivated to investigate what makes us human: how we behave and why we behave as we do. They're driven to explore how our families and our public institutions-such as our schools and legal systems-operate, and could operate better, and how governments and economies work, or as is so often the case, are plagued by dysfunction. These students learn a great deal from their particular courses of study and apply that knowledge to today's issues, the leading problems to be tackled, and various approaches for analyzing and addressing those problems. The greatest opportunities for innovation in the emerging era are in applying evolving technological capabilities to finding better ways to solve human problems like social dysfunction and political corruption; finding ways to better educate children; helping people live healthier and happier lives by altering harmful behaviors; improving our working conditions; discovering better ways to tackle poverty; Improving healthcare and making it more affordable; making our governments more accountable, from the local level up to that of global affairs; and finding optimal ways to incorporate intelligent, nimble machines into our work lives so that we are empowered to do more of the work that we do best, and to let the machines do the rest. Workers with a solid liberal arts education have a strong foundation to build on in pursuing these goals. One of the most immediate needs in technology innovation is to invest products and services with more human qualities. with more sensitivity to human needs and desires. Companies and entrepreneurs that want to succeed today and in the future must learn to consider in all aspects of their product and service creation how they can make use of the new technologies to make them more humane. Still, many other liberal arts disciplines also have much to provide the world of technological innovation. The study of psychology, for example, can help people build products that are more attuned to our emotions and ways of thinking. Experience in Anthropology can additionally help companies understand cultural and individual behavioural factors that should be considered in developing products and in marketing them. As technology allows for more machine intelligence and our lives become increasingly populated by the Internet of things and as the gathering of data about our lives and analysis of it allows for more discoveries about our behaviour, consideration of how new products and services can be crafted for the optimal enhancement of our lives and the nature of our communities, workplaces and governments will be of vital importance. Those products and services developed with the keeneSt sense of how they' can serve our human needs and complement our human talents will have a distinct competitive advantage. Much of the criticism of the liberal arts is based on the false assumption that liberal arts students lack rigor in comparison to those participating in the STEM disciplines and that they are 'soft' and unscientific whereas those who study STEM fields learn the scientific method. In fact the liberal arts teach many methods of rigorous inquiry and analysis, such as close observation and interviewing in ways that hard science adherents don't always appreciate. Many fields have long incorporated the scientific method and other types of data driven scientific inquiry and problem solving. Sociologists have developed sophisticated mathematical models of societal networks. Historians gather voluminous data on centuries-old household expenses, marriage and divorce rates, and the world trade, and use data to conduct statistical analyses, identifying trends and contributing factors to the phenomena they are studying. Linguists have developed high-tech models of the evolution of language, and they've made crucial contributions to the development of one of the technologies behind the rapid advance of automation- natural language processing, whereby computers are able to communicate with the, accuracy and personality of Siri and Alexa. It's also important to debunk the fallacy that liberal arts students who don't study these quantitative analytical methods have no 'hard' or relevant skills. This gets us back to the arguments about the fundamental ways of thinking, inquiring, problem solving and communicating that a liberal arts education teaches.What is the central theme of the passage?
 ...
MCQ->Hollow shafts can be made as strong as solid shafts by making the twisting moments of both the shafts same. Shafts made by __________ have residual stresses....
MCQ-> Read the following passage carefully and answer the questions given. Certain words have been given in bold to help you locate them while answering some of the questions.We are told that economy is growing and that such growth benefits all of us. However, what you see is not what you always get. Most people are experiencing declining economic security in response to the problems of the global system, many communities have turned to Local Exchange Systems (LESs) to help regain some control over their economic situations.Local exchange systems come in many forms. They often involve the creation of a local currency, or a system of bartering labour, or trading of agricultural products as a means of supporting the region in which they are traded. Such a system helps preserve the viability of local economies.Local currencies allow communities to diversify their economies, reinvest resources back into their region and reduce dependence on the highly concentrated and unstable global economy. Each local currency system serves as an exchange bank for skills and resources that Individuals in the community are willing to trade. Whether in the form of paper money, service credits, or other units, a local currency facilitates the exchange of services and resources among the members of a community.By providing incentives for local trade, communities help their small businesses and reduce underemployment by providing the jobs within the community. In addition, the local exchange of food and seeds promotes environmental conservation and community food security. Local food production reduces wasteful transportation and promotes self-reliance and genetic diversity. Each transaction within a local exchange system strengthens the community fabric as neighbours interact and meet one another.There are over 1,000 local change programs worldwide more than 30 local paper currencies in North America and at least 800 Local Exchange Trading Systems (LETS) throughout Europe. New Zealand and Australia Local Exchange Systems vary and evolve in accordance with the needs and circumstances of the local area. This diversity is critical to the success of the local currencies. For instance, a bank in rural Massachusetts refused to lend a fanner the money needed to make it through the winter. In response, the farmer decided to print his own money Berkshire Farm Preserve Notes. In winter, customers buy the notes for $9 and they may redeem them in the summer for $10 worth of vegetables. The system enabled the community to help a farm family after being abandoned by the centralised monetary system. As small family farms continue to disappear at an alarming rate, local currencies provide tools for communities to bind together, support their local food growers and maintain their local food suppliers.Local Exchange Systems are not limited to developed countries.Rural areas of Asia, Latin America and Africa have offered some of the most effective and important programs, by adopting agriculture-based systems of exchange rather than monetary ones. In order to preserve genetic diversity, economic security and avoid dependence on industrial seed and chemical companies, many villages have developed seed saving exchange banks. For example, the village women in Ladakh have begun to collect and exchange rare seeds selected for their ability to grow in a harsh mountain climate. This exchange system protects agriculture diversity while promoting self-reliance. There is no one blueprint for a local exchange system, which is exactly why they are successful vehicles for localisation and sustainability. They promote local economic diversity and regional self-reliance while responding to a region’s specific needs. Local exchange systems play a pivotal role in creating models for sustainable societies. They are an effective educational tool, raising awareness about the global financial system and local economic matters. Local exchange systems also demonstrate that tangible, creative solutions exist and that communities can empower themselves to address global problems.Which of the following is same in meaning as the word ‘LIMITED TO’ as used in the passage?
 ...
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions