1. The first direct demonstration of role of bacteria in causing human diseases came from the studies of:





Write Comment

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Show Similar Question And Answers
QA->List the Diseases Caused By Bacteria ?....
QA->Petrussis causing bacteria is ?....
QA->Syphillis causing bacteria is ?....
QA->Trachoma causing bacteria is ?....
QA->Typhoid causing bacteria is ?....
MCQ-> Throughout human history the leading causes of death have been infection and trauma, Modem medicine has scored significant victories against both, and the major causes of ill health and death are now the chronic degenerative diseases, such as coronary artery disease, arthritis, osteoporosis, Alzheimer’s, macular degeneration, cataract and cancer. These have a long latency period before symptoms appear and a diagnosis is made. It follows that the majority of apparently healthy people are pre-ill.But are these conditions inevitably degenerative? A truly preventive medicine that focused on the pre-ill, analyzing the metabolic errors which lead to clinical illness, might be able to correct them before the first symptom. Genetic risk factors are known for all the chronic degenerative diseases, and are important to the individuals who possess them. At the population level, however, migration studies confirm that these illnesses are linked for the most part to lifestyle factors — exercise, smoking and nutrition. Nutrition is the easiest of these to change, and the most versatile tool for affecting the metabolic changes needed to tilt the balance away from disease.Many national surveys reveal that malnutrition is common in developed countries. This is not the calorie and/or micronutrient deficiency associated with developing nations (type A malnutrition); but multiple micronutrient depletion, usually combined with calorific balance or excess (Type B malnutrition). The incidence and severity of Type B malnutrition will be shown to be worse if newer micronutrient groups such as the essential fatty acids, xanthophylls and falconoid are included in the surveys. Commonly ingested levels of these micronutrients seem to be far too low in many developed countries.There is now considerable evidence that Type B malnutrition is a major cause of chronic degenerative diseases. If this is the case, then t is logical to treat such diseases not with drugs but with multiple micronutrient repletion, or pharmaco-nutrition’. This can take the form of pills and capsules — ‘nutraceuticals’, or food formats known as ‘functional foods’, This approach has been neglected hitherto because it is relatively unprofitable for drug companies — the products are hard to patent — and it is a strategy which does not sit easily with modem medical interventionism. Over the last 100 years, the drug industry has invested huge sums in developing a range of subtle and powerful drugs to treat the many diseases we are subject to. Medical training is couched in pharmaceutical terms and this approach has provided us with an exceptional range of therapeutic tools in the treatment of disease and in acute medical emergencies. However, the pharmaceutical model has also created an unhealthy dependency culture, in which relatively few of us accept responsibility for maintaining our own health. Instead, we have handed over this responsibility to health professionals who know very little about health maintenance, or disease prevention.One problem for supporters of this argument is lack of the right kind of hard evidence. We have a wealth of epidemiological data linking dietary factors to health profiles/ disease risks, and a great deal of information on mechanism: how food factors interact with our biochemistry. But almost all intervention studies with micronutrients, with the notable exception of the omega 3 fatty acids, have so far produced conflicting or negative results. In other words, our science appears to have no predictive value. Does this invalidate the science? Or are we simply asking the wrong questions?Based on pharmaceutical thinking, most intervention studies have attempted to measure the impact of a single micronutrient on the incidence of disease. The classical approach says that if you give a compound formula to test subjects and obtain positive results, you cannot know which ingredient is exerting the benefit, so you must test each ingredient individually. But in the field of nutrition, this does not work. Each intervention on its own will hardly make enough difference to be measured. The best therapeutic response must therefore combine micronutrients to normalise our internal physiology. So do we need to analyse each individual’s nutritional status and then tailor a formula specifically for him or her? While we do not have the resources to analyze millions of individual cases, there is no need to do so. The vast majority of people are consuming suboptimal amounts of most micronutrients, and most of the micronutrients concerned are very safe. Accordingly, a comprehensive and universal program of micronutrient support is probably the most cost-effective and safest way of improving the general health of the nation.The author recommends micronutrient-repletion for large-scale treatment of chronic degenerative diseases because
 ....
MCQ->The first direct demonstration of role of bacteria in causing human diseases came from the studies of:....
MCQ-> The passage given below is followed by a set of three questions. Choose the most appropriate answer to each question.The difficulties historians face in establishing cause-and-effect relations in the history of human societies are broadly similar to the difficulties facing astronomers, climatologists, ecologists, evolutionary biologists, geologists, and palaeontologists. To varying degrees each of these fields is plagued by the impossibility of performing replicated, controlled experimental interventions, the complexity arising from enormous numbers of variables, the resulting uniqueness of each system, the consequent impossibility of formulating universal laws, and the difficulties of predicting emergent properties and future behaviour. Prediction in history, as in other historical sciences, is most feasible on large spatial scales and over long times, when the unique features of millions of small-scale brief events become averaged out. Just as I could predict the sex ratio of the next 1,000 newborns but not the sexes of my own two children, the historian can recognize factors that made2 1 inevitable the broad outcome of the collision between American and Eurasian societies after 13,000 years of separate developments, but not the outcome of the 1960 U.S. presidential election. The details of which candidate said what during a single televised debate in October 1960 Could have given the electoral victory to Nixon instead of to Kennedy, but no details of who said what could have blocked the European conquest of Native Americans. How can students of human history profit from the experience of scientists in other historical sciences? A methodology that has proved useful involves the comparative method and so-called natural experiments. While neither astronomers studying galaxy formation nor human historians can manipulate their systems in controlled laboratory experiments, they both can take advantage of natural experiments, by comparing systems differing in the presence or absence (or in the strong or weak effect) of some putative causative factor. For example, epidemiologists, forbidden to feed large amounts of salt to people experimentally, have still been able to identify effects of high salt intake by comparing groups of humans who already differ greatly in their salt intake; and cultural anthropologists, unable to provide human groups experimentally with varying resource abundances for many centuries, still study long-term effects of resource abundance on human societies by comparing recent Polynesian populations living on islands differing naturally in resource abundance.The student of human history can draw on many more natural experiments than just comparisons among the five inhabited continents. Comparisons can also utilize large islands that have developed complex societies in a considerable degree of isolation (such as Japan, Madagascar, Native American Hispaniola, New Guinea, Hawaii, and many others), as well as societies on hundreds of smaller islands and regional societies within each of the continents. Natural experiments in any field, whether in ecology or human history, are inherently open to potential methodological criticisms. Those include confounding effects of natural variation in additional variables besides the one of interest, as well as problems in inferring chains of causation from observed correlations between variables. Such methodological problems have been discussed in great detail for some of the historical sciences. In particular, epidemiology, the science of drawing inferences about human diseases by comparing groups of people (often by retrospective historical studies), has for a long time successfully employed formalized procedures for dealing with problems similar to those facing historians of human societies. In short, I acknowledge that it is much more difficult to understand human history than to understand problems in fields of science where history is unimportant and where fewer individual variables operate. Nevertheless, successful methodologies for analyzing historical problems have been worked out in several fields. As a result, the histories of dinosaurs, nebulae, and glaciers are generally acknowledged to belong to fields of science rather than to the humanities.Why do islands with considerable degree of isolation provide valuable insights into human history?
 ....
MCQ-> Study the following information carefully and answer these questions.P, Q, R, S, T, W and Z are seven students studying in three different institutes A, B and C. There are three girls among the seven students who study in each of the three institutes. Two of seven students study BCA, two study Medicine and one each studies Aviation Technology, Journalism and MBA.R studies in the same college as P who studies MBA in college B.No girl studies Journalism or MBA. T studies BCA in college C. S studies Journalism in the same college as Q. Neither R nor Z studies BCA. The girl who studies BCA does not study in college C.W and Z study in the same college and W is a guy.Which of the following pairs of students study BCA?
 ....
MCQ-> Study the following information and answer the given questions. Seven people, namely C, D, E, F, G, H and I like different cities namely, Surat, Kolkata, Bangalore, Mumbai, Ranchi, Delhi and Pune. Each of them studies in either of three schools viz. DAS, RIS and VCS with atleast two of them in a school. (Note : None of the information given is necessarily in the same order.) F studies with the one who likes Bangalore in RIS. The one who likes Delhi studies only with H. H does not like Bangalore. C studies with those who like Surat and Pune. C does not study with F. E studies only with the one who likes Mumbai. The one who likes Mumbai does not study with the one who likes Delhi. More than one person studies with D. D does not like Pune. Both I and the one who likes Ranchi study in the same school but not in DAS. H does not like Ranchi. –Which of the following combinations represents the school in which E studies and the city he likes ?
 ....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions