1. Fach of the circles of equal radii with centres A and B pass through the centre of one another circle they cut at C and D then ∠DBC is equal to





Write Comment

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

  • By: anil on 05 May 2019 01.55 am
    Since the circles pass through the centre of each other, the distance between their centres will be equal to the radius of the circle. Distance between the midpoint of line joining centres and centres = r/2.
    Connecting the points of intersection and midpoint of the radii, we get a right angled triangle.
    Cos A = (r/2)/(r) = 1/2
    => A = 60 degrees.
    ∠DBC = 2* angle A = 2*60 = 120 degrees.
Show Similar Question And Answers
QA->The latitudes that pass through Sikkim also pass through which State?....
QA->Sasi alone can do it in 7 days and Soman alone in 8 days. When the help of another man they can finish the work in 3 days, then what amount does the man get?....
QA->THROUGH WHICH STRAIT INTERNATIONAL DATE LINE PASS THROUGH....
QA->A 1 km long train passes through a tunnel of 1 km length at a speed of 1 km per minute. How much time will it take to pass through it completely?....
QA->Short cut key for cut an object or text”....
MCQ->Fach of the circles of equal radii with centres A and B pass through the centre of one another circle they cut at C and D then ∠DBC is equal to....
MCQ-> The story begins as the European pioneers crossed the Alleghenies and started to settle in the Midwest. The land they found was covered with forests. With incredible efforts they felled the trees, pulled the stumps and planted their crops in the rich, loamy soil. When they finally reached the western edge of the place we now call Indiana, the forest stopped and ahead lay a thousand miles of the great grass prairie. The Europeans were puzzled by this new environment. Some even called it the “Great Desert”. It seemed untillable. The earth was often very wet and it was covered with centuries of tangled and matted grasses. With their cast iron plows, the settlers found that the prairie sod could not be cut and the wet earth stuck to their plowshares. Even a team of the best oxen bogged down after a few years of tugging. The iron plow was a useless tool to farm the prairie soil. The pioneers were stymied for nearly two decades. Their western march was hefted and they filled in the eastern regions of the Midwest.In 1837, a blacksmith in the town of Grand Detour, Illinois, invented a new tool. His name was John Deere and the tool was a plow made of steel. It was sharp enough to cut through matted grasses and smooth enough to cast off the mud. It was a simple too, the “sod buster” that opened the great prairies to agricultural development.Sauk Country, Wisconsin is the part of that prairie where I have a home. It is named after the Sauk Indians. In i673 Father Marquette was the first European to lay his eyes upon their land. He found a village laid out in regular patterns on a plain beside the Wisconsin River. He called the place Prairie du Sac) The village was surrounded by fields that had provided maize, beans and squash for the Sauk people for generations reaching back into the unrecorded time.When the European settlers arrived at the Sauk prairie in 1837, the government forced the native Sank people west of the Mississippi River. The settlers came with John Deere’s new invention and used the tool to open the area to a new kind of agriculture. They ignored the traditional ways of the Sank Indians and used their sod-busting tool for planting wheat. Initially, the soil was generous and the nurturing thrived. However each year the soil lost more of its nurturing power. It was only thirty years after the Europeans arrived with their new technology that the land was depleted, Wheat farming became uneconomic and tens of thousands of farmers left Wisconsin seeking new land with sod to bust.It took the Europeans and their new technology just one generation to make their homeland into a desert. The Sank Indians who knew how to sustain themselves on the Sauk prairie land were banished to another kind of desert called a reservation. And they even forgot about the techniques and tools that had sustained them on the prairie for generations unrecorded. And that is how it was that three deserts were created — Wisconsin, the reservation and the memories of a people. A century later, the land of the Sauks is now populated by the children of a second wave of European tanners who learned to replenish the soil through the regenerative powers of dairying, ground cover crops and animal manures. These third and fourth generation farmers and townspeople do not realise, however, that a new settler is coming soon with an invention as powerful as John Deere’s plow.The new technology is called ‘bereavement counselling’. It is a tool forged at the great state university, an innovative technique to meet the needs of those experiencing the death of a loved one, tool that an “process” the grief of the people who now live on the Prairie of the Sauk. As one can imagine the final days of the village of the Sauk Indians before the arrival of the settlers with John Deere’s plow, one can also imagine these final days before the arrival of the first bereavement counsellor at Prairie du Sac) In these final days, the farmers arid the townspeople mourn at the death of a mother, brother, son or friend. The bereaved is joined by neighbours and kin. They meet grief together in lamentation, prayer and song. They call upon the words of the clergy and surround themselves in community.It is in these ways that they grieve and then go on with life. Through their mourning they are assured of the bonds between them and renewed in the knowledge that this death is a part of the Prairie of the Sauk. Their grief is common property, an anguish from which the community draws strength and gives the bereaved the courage to move ahead.It is into this prairie community that the bereavement counsellor arrives with the new grief technology. The counsellor calls the invention a service and assures the prairie folk of its effectiveness and superiority by invoking the name of the great university while displaying a diploma and certificate. At first, we can imagine that the local people will be puzzled by the bereavement counsellor’s claim, However, the counsellor will tell a few of them that the new technique is merely o assist the bereaved’s community at the time of death. To some other prairie folk who are isolated or forgotten, the counsellor will approach the Country Board and advocate the right to treatment for these unfortunate souls. This right will be guaranteed by the Board’s decision to reimburse those too poor tc pay for counselling services. There will be others, schooled to believe in the innovative new tools certified by universities and medical centres, who will seek out the bereavement counsellor by force of habit. And one of these people will tell a bereaved neighbour who is unschooled that unless his grief is processed by a counsellor, he will probably have major psychological problems in later life. Several people will begin to use the bereavement counsellor because, since the Country Board now taxes them to insure access to the technology, they will feel that to fail to be counselled is to waste their money, and to be denied a benefit, or even a right.Finally, one day, the aged father of a Sauk woman will die. And the next door neighbour will not drop by because he doesn’t want to interrupt the bereavement counsellor. The woman’s kin will stay home because they will have learned that only the bereavement counsellor knows how to process grief the proper way. The local clergy will seek technical assistance from the bereavement counsellor to learn the connect form of service to deal with guilt and grief. And the grieving daughter will know that it is the bereavement counsellor who really cares for her because only the bereavement counsellor comes when death visits this family on the Prairie of the Sauk.It will be only one generation between the bereavement counsellor arrives and the community of mourners disappears. The counsellor’s new tool will cut through the social fabric, throwing aside kinship, care, neighbourly obligations and communality ways cc coming together and going on. Like John Deere’s plow, the tools of bereavement counselling will create a desert we a community once flourished, And finally, even the bereavement counsellor will see the impossibility of restoring hope in clients once they are genuinely alone with nothing but a service for consolation. In the inevitable failure of the service, the bereavement counsellor will find the deserts even in herself.Which one of the following best describes the approach of the author?
 ....
MCQ-> Read the following passage carefully and answer the questions given below it. Certain word/phrases have been printed in bold to help you locate them while answering some of the questions.The men of Suvarnanagari were very lazy. They only liked to gossip and tell each other tall tales. As soon as the sun rose, the men would tuck into hearty breakfast and then gather in groups for their daily session of gossiping. Then they would spend the rest of the day telling each other impossible stories. They came back only at lunch and dinner time. The farmlands of Suvarnanagari were very fertile. If the men had spent even a little time at fields, they would have reaped wonderful crops. But as they did nothing, all the responsibilities ended up on shoulders of the woman. They had to work hard the whole day. They cooked, cleaned, sent the children to school, worked in the fields, took the crops to the market - in short they did everything. One day the tired woman gathered and decided that the men needed to be taught a lesson. One of them suggested that they should write to the king about their problem, as he was known to be just and a kind person. So the letter was written and sent to the king. The women went back to their daily routines, hoping that the king would soon take some action. Many days passed, nothing changed, no one came, and the poor women began to lose hope. ‘After all why would the king of such a vast empire be concerned about the plight of the women of such a tiny village?’ they thought. A month passed by and it was a full moon night. The men ate their dinners and because it was so beautiful and well lit outside, they gathered again to chat and boast. That night they were trying to prove to one another that they were capable of performing the most impossible tasks. Soon a tall and handsome stranger joined them. Seeing his noble features and intelligent eyes, each one wanted to prove himself better than the others and impress to him. One said, ‘’I knew the map of this kingdom even before I was born. I ran to meet the king as soon as I was born, my mother had such trouble bringing me back home !’’ Everyone was impressed by this story. Soon another man said, ‘’So what is so great about that ? When I was a just a day old, I could ride a horse. I sat on a big horse and rode all the way to the king’s palace. He received me with lot of love and we had the most delicious meal together.’’ This was even more impressive, so everyone applauded. Now the third man said, ‘’Huh! That is nothing. I sat on an elephant when I was a week old and had lunch with the king in his palace.’’Before the admiring murmurs could die down, the fourth man said, ‘’When I was a month old, I flew like a bird and landed in the king’s garden. The king picked me up and even let me sit on his throne with him,’’ While everyone was in awe of these stories, the stranger spoke up, ‘’ Do all four of you know the king very well?’’ ‘’Of course we do! ‘’ they replied together. ‘’Our king knows and love us. In fact, he is proud to have supernatural beings like us in his kingdom,’’ one of them added. The stranger looked thoughtful. ‘’That makes my task so much easier. You see, I work in the king’s court. Some days ago the king had summoned four supermen to the city in order to repair a large hole in the city wall. As you know, we use only the largest and toughest stones for building these walls, and they could be lifted and put in place only by these supermen. The four supermen asked to be paid in gold bars and the king complied.But the night they received their fee, they disappeared from the palace. I have been wandering around ever since looking for them. The king has ordered me to find the four men and bring them back to the capital to finish the work. They will also have to return the gold bars they ran away with. It looks like the search has finally ended. I will take the four of you to the king along with the gold bars. The king will be very pleased with me and will surely reward me,’’ said the stranger. By the time the stranger finished his story, the four men realised that their lies had landed them into a huge trouble. Their faces turned ashamed and they dived at the stranger’s feet. ‘’Those were all lies. We are all just a bunch of lazy men. But if you forgive us and forget our stories, we promise to do some honest work and stop telling such lies,’’ they wailed. The stranger smiled and said, ’’Alright, I will tell the king there are no supermen in this village, just honest and hardworking men and women.’’ That night the stranger left the village. The women were sure that it was none other than the king himself.How did the men of Suvarnanagiri spend their days ?
 ....
MCQ-> In a modern computer, electronic and magnetic storage technologies play complementary roles. Electronic memory chips are fast but volatile (their contents are lost when the computer is unplugged). Magnetic tapes and hard disks are slower, but have the advantage that they are non-volatile, so that they can be used to store software and documents even when the power is off.In laboratories around the world, however, researchers are hoping to achieve the best of both worlds. They are trying to build magnetic memory chips that could be used in place of today’s electronics. These magnetic memories would be nonvolatile; but they would also he faster, would consume less power, and would be able to stand up to hazardous environments more easily. Such chips would have obvious applications in storage cards for digital cameras and music- players; they would enable handheld and laptop computers to boot up more quickly and to operate for longer; they would allow desktop computers to run faster; they would doubtless have military and space-faring advantages too. But although the theory behind them looks solid, there are tricky practical problems and need to be overcome.Two different approaches, based on different magnetic phenomena, are being pursued. The first, being investigated by Gary Prinz and his colleagues at the Naval Research Laboratory (NRL) in Washington, D.c), exploits the fact that the electrical resistance of some materials changes in the presence of magnetic field— a phenomenon known as magneto- resistance. For some multi-layered materials this effect is particularly powerful and is, accordingly, called “giant” magneto-resistance (GMR). Since 1997, the exploitation of GMR has made cheap multi-gigabyte hard disks commonplace. The magnetic orientations of the magnetised spots on the surface of a spinning disk are detected by measuring the changes they induce in the resistance of a tiny sensor. This technique is so sensitive that it means the spots can be made smaller and packed closer together than was previously possible, thus increasing the capacity and reducing the size and cost of a disk drive. Dr. Prinz and his colleagues are now exploiting the same phenomenon on the surface of memory chips, rather spinning disks. In a conventional memory chip, each binary digit (bit) of data is represented using a capacitor-reservoir of electrical charge that is either empty or fill -to represent a zero or a one. In the NRL’s magnetic design, by contrast, each bit is stored in a magnetic element in the form of a vertical pillar of magnetisable material. A matrix of wires passing above and below the elements allows each to be magnetised, either clockwise or anti-clockwise, to represent zero or one. Another set of wires allows current to pass through any particular element. By measuring an element’s resistance you can determine its magnetic orientation, and hence whether it is storing a zero or a one. Since the elements retain their magnetic orientation even when the power is off, the result is non-volatile memory. Unlike the elements of an electronic memory, a magnetic memory’s elements are not easily disrupted by radiation. And compared with electronic memories, whose capacitors need constant topping up, magnetic memories are simpler and consume less power. The NRL researchers plan to commercialise their device through a company called Non-V olatile Electronics, which recently began work on the necessary processing and fabrication techniques. But it will be some years before the first chips roll off the production line.Most attention in the field in focused on an alternative approach based on magnetic tunnel-junctions (MTJs), which are being investigated by researchers at chipmakers such as IBM, Motorola, Siemens and Hewlett-Packard. IBM’s research team, led by Stuart Parkin, has already created a 500-element working prototype that operates at 20 times the speed of conventional memory chips and consumes 1% of the power. Each element consists of a sandwich of two layers of magnetisable material separated by a barrier of aluminium oxide just four or five atoms thick. The polarisation of lower magnetisable layer is fixed in one direction, but that of the upper layer can be set (again, by passing a current through a matrix of control wires) either to the left or to the right, to store a zero or a one. The polarisations of the two layers are then either the same or opposite directions.Although the aluminum-oxide barrier is an electrical insulator, it is so thin that electrons are able to jump across it via a quantum-mechanical effect called tunnelling. It turns out that such tunnelling is easier when the two magnetic layers are polarised in the same direction than when they are polarised in opposite directions. So, by measuring the current that flows through the sandwich, it is possible to determine the alignment of the topmost layer, and hence whether it is storing a zero or a one.To build a full-scale memory chip based on MTJs is, however, no easy matter. According to Paulo Freitas, an expert on chip manufacturing at the Technical University of Lisbon, magnetic memory elements will have to become far smaller and more reliable than current prototypes if they are to compete with electronic memory. At the same time, they will have to be sensitive enough to respond when the appropriate wires in the control matrix are switched on, but not so sensitive that they respond when a neighbouring elements is changed. Despite these difficulties, the general consensus is that MTJs are the more promising ideas. Dr. Parkin says his group evaluated the GMR approach and decided not to pursue it, despite the fact that IBM pioneered GMR in hard disks. Dr. Prinz, however, contends that his plan will eventually offer higher storage densities and lower production costs.Not content with shaking up the multi-billion-dollar market for computer memory, some researchers have even more ambitious plans for magnetic computing. In a paper published last month in Science, Russell Cowburn and Mark Well and of Cambridge University outlined research that could form the basis of a magnetic microprocessor — a chip capable of manipulating (rather than merely storing) information magnetically. In place of conducting wires, a magnetic processor would have rows of magnetic dots, each of which could be polarised in one of two directions. Individual bits of information would travel down the rows as magnetic pulses, changing the orientation of the dots as they went. Dr. Cowbum and Dr. Welland have demonstrated how a logic gate (the basic element of a microprocessor) could work in such a scheme. In their experiment, they fed a signal in at one end of the chain of dots and used a second signal to control whether it propagated along the chain.It is, admittedly, a long way from a single logic gate to a full microprocessor, but this was true also when the transistor was first invented. Dr. Cowburn, who is now searching for backers to help commercialise the technology, says he believes it will be at least ten years before the first magnetic microprocessor is constructed. But other researchers in the field agree that such a chip, is the next logical step. Dr. Prinz says that once magnetic memory is sorted out “the target is to go after the logic circuits.” Whether all-magnetic computers will ever be able to compete with other contenders that are jostling to knock electronics off its perch — such as optical, biological and quantum computing — remains to be seen. Dr. Cowburn suggests that the future lies with hybrid machines that use different technologies. But computing with magnetism evidently has an attraction all its own.In developing magnetic memory chips to replace the electronic ones, two alternative research paths are being pursued. These are approaches based on:
 ....
MCQ-> Read the given passage carefully and select the best answer to each question out of the four given alternatives.The Divine Comedy is a narrative poem describing Dante's imaginary journey. Midway on his journey through life Dante realizes he has taken the wrong path. The Roman poet Virgil searches for the lost Dante at the request of Beatrice; he finds Dante in the woods on the evening of Good Friday in the year 1300 and serves as a guide as Dante begins his religious pilgrimage to find God. To reach his goal, Dante passes through Hell, Purgatory and Paradise. The Divine Comedy was not titled as such by Dante; his title for the work was simply Commedia or Comedy. Dante’s use of the word "comedy" is medieval by definition. To Dante and his contemporaries, the term "comedy" meant a tale with a happy ending, not a funny story as the word has since come to mean. Dante and Virgil enter the wide gates of Hell and descend through the nine circles of Hell. In each circle they see sinners being punished for their sins on earth; Dante sees the torture as Divine justice. Dante first travels through circles of hell and then through 3 rings before entering the 8th circle. Then there are 9 bowge before Dante reached the 9th circle. After 9th circle Dante has to travel 4 more regions. On Easter Sunday, Dante emerges from Hell. Through his travels, he has found his way to God and is able, once more, to look upon the stars.To reach god, Dante has to pass through which of the following?
 ....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions