1. The working principle of a Washing Machine is

Answer: CENTRIFUGATION

Reply

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->The working principle of a Washing Machine is....
QA->Who is the inventor of Washing Machine?....
QA->The working of a Rocket is based on the principle of ?....
QA->What is the working principle of an induction cooker ?....
QA->An assembler that runs on one machine, but generating code for another machine is called:....
MCQ-> Based on the information answer the questions which follow.A consultant to Department of Commerce. Government of Bianca has suggested 30 products which have high export potential. Dora an entrepreneur and prospective exporter notices that these products can be grouped in three ways- Machine made goods, Handmade goods and Intermediate goods. Among these 30 products some products are both machine made and intermediate goods but not handmade goods. Few products have a combination of handmade and machine made goods but not intermediate goods. Some products are handmade and intermediate goods but not machine made goods. Further it is seen that handmade-machine made goods are I less than machine made-intermediate goods. Similarly the total number of handmade-intermediate goods is I less than machine made-intermediate goods. There are just 4 products common across all product groups i.e. machine made-handmade- intermediate goods. Apart from this the number of only handmade goods is same as only machine made goods but less than only intermediate goods. Each product group/combination has at least one product. Dora prefers to export machine made goods and avoid hand made goods. She finds out that only handmade goods are twice the machine made-intermediate goods and the number of only intermediate goods is an even number. Whereas her close friend Sara prefers to export intermediate goods followed by only handmade goods.Sara and Dora prefer to export as many common products as possible in order to understand the regulatory conditions. Keeping their preferences intact, what is the maximum number of common products which can be exported by both of them?
 ...
MCQ-> Read the following passage carefully and answer the questions given below it. Before my many years’ service in a restaurant, I attended a top science university. The year was 2003 and I was finishing the project that would win me my professorship. My fortysecond birthday had made a lonely visit the week before, and I was once again by myself in the flat. Like countless other mornings, I ordered a bagel from the toaster. ‘Yes, sir!’ it replied with robotic relish, and I began the day’s work on the project. It was a magnificent machine, the thing I was makingcapable of transferring the minds of any two beings into each other’s bodies. As the toaster began serving my bagel on to a plate, I realised the project was in fact ready for testing. I retrieved the duck and the catwhich I had bought for this purpose from their containers, and set about calibrating the machine in their direction. Once ready, I leant against the table, holding the bagel I was too excited to eat, and initiated the transfer sequence. As expected, the machine whirred and hummed into action, my nerves tingling at its synthetic sounds. The machine hushed, extraction and injection nozzles poised, scrutinizing its targets. The cat, though, was suddenly gripped by terrible alarm. The brute leapt into the air, flinging itself onto the machine. I watched in horror as the nozzles swung towards me; and, with a terrible, psychedelic whirl of colours, felt my mind wrenched from its sockets. When I awoke, moments later, I noticed first that I was two feet shorter. Then, I realised the lack of my limbs, and finally it occurred to me that I was a toaster. I saw immediately the solution to the situation – the machine could easily reverse the transfer but was then struck by my utter inability to carry this out. After some consideration, using what I supposed must be the toaster’s onboard computer; I devised a strategy for rescue. I began to familiarise myself with my new body : the grill, the bread bin, the speaker and the spring mechanism. Through the device’s rudimentary eye with which it served its creations – I could see the internal telephone on the wall. Aiming carefully, I began propelling slices of bread at it. The toaster was fed by a large stock of the stuff, yet as more and more bounced lamely off the phone, I began to fear its exhaustion. Toasting the bread before launch proved a wiser tactic. A slice of crusty wheat knocked the receiver off its cradle, and the immovable voice of the reception clerk answered. Resisting the urge to exclaim my unlikely predicament, I called from the table : “I’m having a bit of trouble up here, Room 91. Could you lend a hand ?” “Certainly, sir, there’s a burst water pipe on the floor above, I suppose I’ll kill two birds with one stone and sort you out on the way.” The clerk arrived promptly, and after a detailed and horrifying explanation, finally agreed to press the button on the machine and bring me back to my original state.Why did the author believe that he would earn professorship ?
 ...
MCQ-> Modern science, exclusive of geometry, is a comparatively recent creation and can be said to have originated with Galileo and Newton. Galileo was the first scientist to recognize clearly that the only way to further our understanding of the physical world was to resort to experiment. However obvious Galileo’s contention may appear in the light of our present knowledge, it remains a fact that the Greeks, in spite of their proficiency in geometry, never seem to have realized the importance of experiment. To a certain extent this may be attributed to the crudeness of their instruments of measurement. Still an excuse of this sort can scarcely be put forward when the elementary nature of Galileo’s experiments and observations is recalled. Watching a lamp oscillate in the cathedral of Pisa, dropping bodies from the leaning tower of Pisa, rolling balls down inclined planes, noticing the magnifying effect of water in a spherical glass vase, such was the nature of Galileo’s experiments and observations. As can be seen, they might just as well have been performed by the Greeks. At any rate, it was thanks to such experiments that Galileo discovered the fundamental law of dynamics, according to which the acceleration imparted to a body is proportional to the force acting upon it.The next advance was due to Newton, the greatest scientist of all time if account be taken of his joint contributions to mathematics and physics. As a physicist, he was of course an ardent adherent of the empirical method, but his greatest title to fame lies in another direction. Prior to Newton, mathematics, chiefly in the form of geometry, had been studied as a fine art without any view to its physical applications other than in very trivial cases. But with Newton all the resources of mathematics were turned to advantage in the solution of physical problems. Thenceforth mathematics appeared as an instrument of discovery, the most powerful one known to man, multiplying the power of thought just as in the mechanical domain the lever multiplied our physical action. It is this application of mathematics to the solution of physical problems, this combination of two separate fields of investigation, which constitutes the essential characteristic of the Newtonian method. Thus problems of physics were metamorphosed into problems of mathematics.But in Newton’s day the mathematical instrument was still in a very backward state of development. In this field again Newton showed the mark of genius by inventing the integral calculus. As a result of this remarkable discovery, problems, which would have baffled Archimedes, were solved with ease. We know that in Newton’s hands this new departure in scientific method led to the discovery of the law of gravitation. But here again the real significance of Newton’s achievement lay not so much in the exact quantitative formulation of the law of attraction, as in his having established the presence of law and order at least in one important realm of nature, namely, in the motions of heavenly bodies. Nature thus exhibited rationality and was not mere blind chaos and uncertainty. To be sure, Newton’s investigations had been concerned with but a small group of natural phenomena, but it appeared unlikely that this mathematical law and order should turn out to be restricted to certain special phenomena; and the feeling was general that all the physical processes of nature would prove to be unfolding themselves according to rigorous mathematical laws.When Einstein, in 1905, published his celebrated paper on the electrodynamics of moving bodies, he remarked that the difficulties, which surrouned the equations of electrodynamics, together with the negative experiments of Michelson and others, would be obviated if we extended the validity of the Newtonian principle of the relativity of Galilean motion, which applies solely to mechanical phenomena, so as to include all manner of phenomena: electrodynamics, optical etc. When extended in this way the Newtonian principle of relativity became Einstein’s special principle of relativity. Its significance lay in its assertion that absolute Galilean motion or absolute velocity must ever escape all experimental detection. Henceforth absolute velocity should be conceived of as physically meaningless, not only in the particular ream of mechanics, as in Newton’s day, but in the entire realm of physical phenomena. Einstein’s special principle, by adding increased emphasis to this relativity of velocity, making absolute velocity metaphysically meaningless, created a still more profound distinction between velocity and accelerated or rotational motion. This latter type of motion remained absolute and real as before. It is most important to understand this point and to realize that Einstein’s special principle is merely an extension of the validity of the classical Newtonian principle to all classes of phenomena.According to the author, why did the Greeks NOT conduct experiments to understand the physical world?
 ...
MCQ->The total cost of a washing machine with a toaster was Rs 10500. The toaster was sold at a profit of 22% and the washing machine at a loss of 12%. If the sale price was the same in both the items, then the cost price of the cheaper item was ..................
MCQ->The total cost of a washing machine with an electric chimney was Rs 57,750. The electric chimney was sold at a profit of 34% and the washing machine at a loss of 24%. If the sale price was the same in both the items, then the cost price of the cheaper item was _______....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions