1. On a straight road XY, 100 m long, five heavy stones are placed 2 m apart beginning at the end X. A worker, starting at X, has to transport all the stones to Y, by carrying only one stone at a time. The minimum distance he has to travel is





Write Comment

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

  • By: anil on 05 May 2019 02.30 am
    The weights are at distances of 0 m, 2 m, 4 m, 6 m and 8 m from X. Let us first keep all the weights at a distance of 8 m from X. This would be 8 + 6*2 + 4*2 + 2*2 = 32 m. Now from the point where all the weights are kept is at a distance of 92 m from Y. So total distance required = 184+184+184+184+92 = 828 m. So in all 860 m.
Tags
Show Similar Question And Answers
QA->A car which runs along a straight level road at a speed of 36km/hour is brought to rest in 2 seconds by applying the brakes. The stopping distance is :....
QA->What is the total earnings of a worker from the following data? Standard time for completing the job 50 hours. Actual time taken for completing the job 45 hours. Time rate is Rs.20 per hour, premium bonus is 60% of time saved.....
QA->Whichstate has ranked first in Road Accidents in India 2015 report released by theMinister of Road Transport and Highways?....
QA->Poles are arranged in straight line with 1 metre gap between them. How many poles will be there in a straight line of 30 metres ?....
QA->Who is the author of “Beginning of the Beginning”?....
MCQ->On a straight road XY, 100 m long, five heavy stones are placed 2 m apart beginning at the end X. A worker, starting at X, has to transport all the stones to Y, by carrying only one stone at a time. The minimum distance he has to travel is....
MCQ-> Cells are the ultimate multi-taskers: they can switch on genes and carry out their orders, talk to each other, divide in two, and much more, all at the same time. But they couldn’t do any of these tricks without a power source to generate movement. The inside of a cell bustles with more traffic than Delhi roads, and, like all vehicles, the cell’s moving parts need engines. Physicists and biologists have looked ‘under the hood’ of the cell and laid out the nuts and bolts of molecular engines.The ability of such engines to convert chemical energy into motion is the envy nanotechnology researchers looking for ways to power molecule-sized devices. Medical researchers also want to understand how these engines work. Because these molecules are essential for cell division, scientists hope to shut down the rampant growth of cancer cells by deactivating certain motors. Improving motor-driven transport in nerve cells may also be helpful for treating diseases such as Alzheimer’s, Parkinson’s or ALS, also known as Lou Gehrig’s disease.We wouldn’t make it far in life without motor proteins. Our muscles wouldn’t contract. We couldn’t grow, because the growth process requires cells to duplicate their machinery and pull the copies apart. And our genes would be silent without the services of messenger RNA, which carries genetic instructions over to the cell’s protein-making factories. The movements that make these cellular activities possible occur along a complex network of threadlike fibers, or polymers, along which bundles of molecules travel like trams. The engines that power the cell’s freight are three families of proteins, called myosin, kinesin and dynein. For fuel, these proteins burn molecules of ATP, which cells make when they break down the carbohydrates and fats from the foods we eat. The energy from burning ATP causes changes in the proteins’ shape that allow them to heave themselves along the polymer track. The results are impressive: In one second, these molecules can travel between 50 and 100 times their own diameter. If a car with a five-foot-wide engine were as efficient, it would travel 170 to 340 kilometres per hour.Ronald Vale, a researcher at the Howard Hughes Medical Institute and the University of California at San Francisco, and Ronald Milligan of the Scripps Research Institute have realized a long-awaited goal by reconstructing the process by which myosin and kinesin move, almost down to the atom. The dynein motor, on the other hand, is still poorly understood. Myosin molecules, best known for their role in muscle contraction, form chains that lie between filaments of another protein called actin. Each myosin molecule has a tiny head that pokes out from the chain like oars from a canoe. Just as rowers propel their boat by stroking their oars through the water, the myosin molecules stick their heads into the actin and hoist themselves forward along the filament. While myosin moves along in short strokes, its cousin kinesin walks steadily along a different type of filament called a microtubule. Instead of using a projecting head as a lever, kinesin walks on two ‘legs’. Based on these differences, researchers used to think that myosin and kinesin were virtually unrelated. But newly discovered similarities in the motors’ ATP-processing machinery now suggest that they share a common ancestor — molecule. At this point, scientists can only speculate as to what type of primitive cell-like structure this ancestor occupied as it learned to burn ATP and use the energy to change shape. “We’ll never really know, because we can’t dig up the remains of ancient proteins, but that was probably a big evolutionary leap,” says Vale.On a slightly larger scale, loner cells like sperm or infectious bacteria are prime movers that resolutely push their way through to other cells. As L. Mahadevan and Paul Matsudaira of the Massachusetts Institute of Technology explain, the engines in this case are springs or ratchets that are clusters of molecules, rather than single proteins like myosin and kinesin. Researchers don’t yet fully understand these engines’ fueling process or the details of how they move, but the result is a force to be reckoned with. For example, one such engine is a spring-like stalk connecting a single-celled organism called a vorticellid to the leaf fragment it calls home. When exposed to calcium, the spring contracts, yanking the vorticellid down at speeds approaching three inches (eight centimetres) per second.Springs like this are coiled bundles of filaments that expand or contract in response to chemical cues. A wave of positively charged calcium ions, for example, neutralizes the negative charges that keep the filaments extended. Some sperm use spring-like engines made of actin filaments to shoot out a barb that penetrates the layers that surround an egg. And certain viruses use a similar apparatus to shoot their DNA into the host’s cell. Ratchets are also useful for moving whole cells, including some other sperm and pathogens. These engines are filaments that simply grow at one end, attracting chemical building blocks from nearby. Because the other end is anchored in place, the growing end pushes against any barrier that gets in its way.Both springs and ratchets are made up of small units that each move just slightly, but collectively produce a powerful movement. Ultimately, Mahadevan and Matsudaira hope to better understand just how these particles create an effect that seems to be so much more than the sum of its parts. Might such an understanding provide inspiration for ways to power artificial nano-sized devices in the future? “The short answer is absolutely,” says Mahadevan. “Biology has had a lot more time to evolve enormous richness in design for different organisms. Hopefully, studying these structures will not only improve our understanding of the biological world, it will also enable us to copy them, take apart their components and recreate them for other purpose.”According to the author, research on the power source of movement in cells can contribute to
 ....
MCQ-> DIRECTIONS for the following three questions: Answer the questions on the basis of the information given below.A city has two perfectly circular and concentric ring roads, the outer ring road (OR) being twice as long as the inner ring road (IR). There are also four (straight line) chord roads from E1, the east end point of OR to N2, the north end point of IR; from N1, the north end point of OR to W2, the west end point of IR; from W1, the west end point of OR, to S2, the south end point of IR; and from S1 the south end point of OR to E2, the east end point of IR. Traffic moves at a constant speed of $$30\pi$$ km/hr on the OR road, 20$$\pi$$ km/hr on the IR road, and 15$$\sqrt5$$ km/hr on all the chord roads.The ratio of the sum of the lengths of all chord roads to the length of the outer ring road is
 ....
MCQ-> I want to stress this personal helplessness we are all stricken with in the face of a system that has passed beyond our knowledge and control. To bring it nearer home, I propose that we switch off from the big things like empires and their wars to more familiar little things. Take pins for example! I do not know why it is that I so seldom use a pin when my wife cannot get on without boxes of them at hand; but it is so; and I will therefore take pins as being for some reason specially important to women.There was a time when pinmakers would buy the material; shape it; make the head and the point; ornament it; and take it to the market, and sell it and the making required skill in several operations. They not only knew how the thing was done from beginning to end, but could do it all by themselves. But they could not afford to sell you a paper of pins for the farthing. Pins cost so much that a woman's dress allowance was calling pin money.By the end of the 18th century Adam Smith boasted that it took 18 men to make a pin, each man doing a little bit of the job and passing the pin on to the next, and none of them being able to make a whole pin or to buy the materials or to sell it when it was made. The most you could say for them was that at least they had some idea of how it was made, though they could not make it. Now as this meant that they were clearly less capable and knowledgeable men than the old pin-makers, you may ask why Adam Smith boasted of it as a triumph of civilisation when its effect had so clearly a degrading effect. The reason was that by setting each man to do just one little bit of the work and nothing but that, over and over again, he became very quick at it. The men, it is said, could turn out nearly 5000 pins a day each; and thus pins became plentiful and cheap. The country was supposed to be richer because it had more pins, though it had turned capable men into mere machines doing their work without intelligence and being fed by the spare food of the capitalist just as an engine is fed with coals and oil. That was why the poet Goldsmith, who was a farsighted economist as well as a poet, complained that 'wealth accumulates, and men decay'.Nowadays Adam Smith's 18 men are as extinct as the diplodocus. The 18 flesh-and-blood men have been replaced by machines of steel which spout out pins by the hundred million. Even sticking them into pink papers is done by machinery. The result is that with the exception of a few people who design the machines, nobody knows how to make a pin or how a pin is made: that is to say, the modern worker in pin manufacture need not be one-tenth so intelligent, skilful and accomplished as the old pinmaker; and the only compensation we have for this deterioration is that pins are so cheap that a single pin has no expressible value at all. Even with a big profit stuck on to the cost-price you can buy dozens for a farthing; and pins are so recklessly thrown away and wasted that verses have to be written to persuade children (without success) that it is a sin to steal, if even it’s a pin.Many serious thinkers, like John Ruskin and William Morris, have been greatly troubled by this, just as Goldsmith was, and have asked whether we really believe that it is an advance in wealth to lose our skill and degrade our workers for the sake of being able to waste pins by the ton. We shall see later on, when we come to consider the Distribution of Leisure, that the cure for this is not to go back to the old free for higher work than pin-making or the like. But in the meantime the fact remains that the workers are now not able to make anything themselves even in little bits. They are ignorant and helpless, and cannot lift their finger to begin their day's work until it has all been arranged for them by their employer's who themselves do not understand the machines they buy, and simply pay other people to set them going by carrying out the machine maker's directions.The same is true for clothes. Earlier the whole work of making clothes, from the shearing of the sheep to the turning out of the finished and washed garment ready to put on, had to be done in the country by the men and women of the household, especially the women; so that to this day an unmarried woman is called a spinster. Nowadays nothing is left of all this but the sheep shearing; and even that, like the milking of cows, is being done by machinery, as the sewing is. Give a woman a sheep today and ask her to produce a woollen dress for you; and not only will she be quite unable to do it, but you are likely to find that she is not even aware of any connection between sheep and clothes. When she gets her clothes, which she does by buying them at the shop, she knows that there is a difference between wool and cotton and silk, between flannel and merino, perhaps even between stockinet and other wefts; but as to how they are made, or what they are made of, or how they came to be in the shop ready for her to buy, she knows hardly anything. And the shop assistant from whom she buys is no wiser. The people engaged in the making of them know even less; for many of them are too poor to have much choice of materials when they buy their own clothes.Thus the capitalist system has produced an almost universal ignorance of how things are made and done, whilst at the same time it has caused them to be made and done on a gigantic scale. We have to buy books and encyclopaedias to find out what it is we are doing all day; and as the books are written by people who are not doing it, and who get their information from other books, what they tell us is twenty to fifty years out of date knowledge and almost impractical today. And of course most of us are too tired of our work when we come home to want to read about it; what we need is cinema to take our minds off it and feel our imagination.It is a funny place, this word of capitalism, with its astonishing spread of education and enlightenment. There stand the thousands of property owners and the millions of wage workers, none of them able to make anything, none of them knowing what to do until somebody tells them, none of them having the least notion of how it is made that they find people paying them money, and things in the shops to buy with it. And when they travel they are surprised to find that savages and Esquimaux and villagers who have to make everything for themselves are more intelligent and resourceful! The wonder would be if they were anything else. We should die of idiocy through disuse of our mental faculties if we did not fill our heads with romantic nonsense out of illustrated newspapers and novels and plays and films. Such stuff keeps us alive, but it falsifies everything for us so absurdly that it leaves us more or less dangerous lunatics in the real world.Excuse my going on like this; but as I am a writer of books and plays myself, I know the folly and peril of it better than you do. And when I see that this moment of our utmost ignorance and helplessness, delusion and folly, has been stumbled on by the blind forces of capitalism as the moment for giving votes to everybody, so that the few wise women are hopelessly overruled by the thousands whose political minds, as far as they can be said to have any political minds at all, have been formed in the cinema, I realise that I had better stop writing plays for a while to discuss political and social realities in this book with those who are intelligent enough to listen to me.A suitable title to the passage would be
 ....
MCQ-> Read the passage given below and answer the questions that follow:-Brazil is a top exporter of every commodity that has seen dizzying price surges - iron ore, soybeans, sugar - producing a golden age for economic growth Foreign money-flows into Brazilian stocks and bonds climbed heavenward, up more than tenfold, from $5 billion a year in early 2007 to more than $50 billion in the twelve months through March 2011.The flood of foreign money buying up Brazilian assets has made the currency one of the most expensive in the world, and Brazil one of the most costly, overhyped economies. Almost every major emerging- market currency has strengthened against the dollar over the last decade, but the Brazilian Real is on a path alone, way above the pack, having doubled in value against the dollar.Economists have all kinds of fancy ways to measure the real value of a currency, but when a country is pricing itself this far out of the competition, you can feel it on the ground. In early 2011 the major Rio paper, 0 Globo, ran a story on prices showing that croissants are more expensive than they are in Paris, haircuts cost more than they do in London, bike rentals are more expensive than in Amsterdam, and movie tickets sell for higher prices than in Madrid. A rule of the road: if the local prices in an emerging market country feel expensive even to a visitor from a rich nation, that country is probably not a breakout nation.There is no better example of how absurd it is to lump all the big emerging markets together than the frequent pairing of Brazil and China. Those who make this comparison are referring only to the fact that they are the biggest players in their home regions, not to the way the economies actually run. Brazil is the world‘s leading exporter of many raw materials, and China is the leading importer; that makes them major trade partners - China surpassed the United States as Brazil's leading trade partner in 2009 f but it also makes them opposites in almost every important economic respect: Brazil is the un-China, with interest rates that are too high, and a currency that is too expensive. It spends too little on roads and too much on welfare, and as a result has a very un-China-like growth record.It may not be entirely fair to compare economic growth in Brazil with that of its Asian counterparts, because Brazil has a per capita income of $12,000, more than two times China's and nearly ten times India's. But even taking into account the fact that it is harder for rich nations to grow quickly, Brazil's growth has been disappointing. Since the early 19805 the Brazilian growth rate has oscillated around an average of 2.5 percent, spiking only in concert with increased prices for Brazil's key commodity exports. While China has been criticized for pursuing "growth at any cost," Brazil has sought to secure "stability at any cost." Brazil's caution stems from its history of financial crises, in which overspending produced debt, humiliating defaults, and embarrassing devaluations, culminating in a disaster that is still recent enough to be fresh in every Brazilian adult's memory: the hyperinflation that started in the early 19805 and peaked in 1994, at the vertiginous annual rate of 2,100 percent.Wages were pegged to inflation but were increased at varying intervals in different industries, 50 workers never really knew whether they were making good money or not. As soon as they were paid, they literally ran to the store with cash to buy food, and they could afford little else, causing non-essential industries to start to die. Hyperinflation finally came under control in l995, but it left a problem of regular behind. Brazil has battled inflation ever since by maintaining one of the highest interest rates in the emerging world. Those high rates have attracted a surge of foreign money, which is partly why the Brazilian Real is so expensive relative to comparable currencies.There is a growing recognition that China faces serious "imbalances" that could derail its long economic boom. Obsessed until recently with high growth, China has been pushing too hard to keep its currency too cheap (to help its export industries compete), encouraging excessively high savings and keeping interest rates rock bottom to fund heavy spending on roads and ports. China is only now beginning to consider a shift in spending priorities to create social programs that protect its people from the vicissitudes of old age and unemployment.Brazil’s economy is just as badly out of balance, though in opposite ways. While China has introduced reforms relentlessly for three decades, opening itself up to the world even at the risk of domestic instability, Brazil has pushed reforms only in the most dire circumstances, for example, privatizing state companies when the government budget is near collapse. Fearful of foreign shocks, Brazil is still one of the most closed economies in the emerging world - total imports and exports account for only 15 percent of GDP - despite its status as the world's leading exporter of sugar, orange juice, coffee, poultry, and beef.To pay for its big government, Brazil has jacked up taxes and now has a tax burden that equals 38 percent of GDP, the highest in the emerging world, and very similar to the tax burden in developed European welfare states, such as Norway and France. This heavy load of personal and corporate tax on a relatively poor country means that businesses don’t have the money to invest in new technology or training, which in turn means that industry is not getting more efficient. Between 1986 and 2008 Brazil’s productivity grew at an annual rate of :about 0.2 percent, compared to 4 percent in China. Over the same period, productivity grew in India at close to 3 percent and in South Korea and Thailand at close to 2 percent. According to the passage, the major concern facing the Brazil economy is:
 ....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions