1. Any inclined surface can be shown in true shape when the appropriate auxiliary view is used.



Write Comment

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->How many image can a man see if he stands between two plane mirrors inclined at an angle of 60°?....
QA->Two-stage, surface-to-surface missile that can travel 4,000 km and can carry a nuclear warhead weighing one tonne, which was successfully test fired by India on January 2,2017?....
QA->Any industry located in a rural area which produces any goods or renders any service with or without the use of power and in which the fixed capital investment per head of a worker does not exceed one lakh rupees is known as:....
QA->Name the surface-to-surface ballistic missile successfully test fired by Pakistan on December 11, 2015 which can carry nuclear warheads within a range of 2,750?....
QA->The application fee for obtaining certified copy of any public document form Registrar’s office shall be paid in the shape of :....
MCQ->Any inclined surface can be shown in true shape when the appropriate auxiliary view is used.....
MCQ-> The second plan to have to examine is that of giving to each person what she deserves. Many people, especially those who are comfortably off, think this is what happens at present: that the industrious and sober and thrifty are never in want, and that poverty is due to idleness, improvidence, drinking, betting, dishonesty, and bad character generally. They can point to the fact that a labour whose character is bad finds it more difficult to get employment than one whose character is good; that a farmer or country gentleman who gambles and bets heavily, and mortgages his land to live wastefully and extravagantly, is soon reduced to poverty; and that a man of business who is lazy and does not attend to it becomes bankrupt. But this proves nothing that you cannot eat your cake and have it too; it does not prove that your share of the cake was a fair one. It shows that certain vices make us rich. People who are hard, grasping, selfish, cruel, and always ready to take advantage of their neighbours, become very rich if they are clever enough not to overreach themselves. On the other hand, people who are generous, public spirited, friendly, and not always thinking of the main chance, stay poor when they are born poor unless they have extraordinary talents. Also as things are today, some are born poor and others are born with silver spoons in their mouths: that is to say, they are divided into rich and poor before they are old enough to have any character at all. The notion that our present system distributes wealth according to merit, even roughly, may be dismissed at once as ridiculous. Everyone can see that it generally has the contrary effect; it makes a few idle people very rich, and a great many hardworking people very poor.On this, intelligent Lady, your first thought may be that if wealth is not distributed according to merit, it ought to be; and that we should at once set to work to alter our laws so that in future the good people shall be rich in proportion to their goodness and the bad people poor in proportion to their badness. There are several objections to this; but the very first one settles the question for good and all. It is, that the proposal is impossible and impractical. How are you going to measure anyone's merit in money? Choose any pair of human beings you like, male or female, and see whether you can decide how much each of them should have on her or his merits. If you live in the country, take the village blacksmith and the village clergyman, or the village washerwoman and the village schoolmistress, to begin with. At present, the clergyman often gets less pay than the blacksmith; it is only in some villages he gets more. But never mind what they get at present: you are trying whether you can set up a new order of things in which each will get what he deserves. You need not fix a sum of money for them: all you have to do is to settle the proportion between them. Is the blacksmith to have as much as the clergyman? Or twice as much as the clergyman? Or half as much as the clergyman? Or how much more or less? It is no use saying that one ought to have more the other less; you must be prepared to say exactly how much more or less in calculable proportion.Well, think it out. The clergyman has had a college education; but that is not any merit on his part: he owns it to his father; so you cannot allow him anything for that. But through it he is able to read the New Testament in Greek; so that he can do something the blacksmith cannot do. On the other hand, the blacksmith can make a horse-shoe, which the parson cannot. How many verses of the Greek Testament are worth one horse-shoe? You have only to ask the silly question to see that nobody can answer it.Since measuring their merits is no use, why not try to measure their faults? Suppose the blacksmith swears a good deal, and gets drunk occasionally! Everybody in the village knows this; but the parson has to keep his faults to himself. His wife knows them; but she will not tell you what they are if she knows that you intend to cut off some of his pay for them. You know that as he is only a mortal human being, he must have some faults; but you cannot find them out. However, suppose he has some faults he is a snob; that he cares more for sport and fashionable society than for religion! Does that make him as bad as the blacksmith, or twice as bad, or twice and quarter as bad, or only half as bad? In other words, if the blacksmith is to have a shilling, is the parson to have six pence, or five pence and one-third, or two shillings? Clearly these are fools' questions: the moment they bring us down from moral generalities to business particulars it becomes plain to every sensible person that no relation can be established between human qualities, good or bad, and sums of money, large or small.It may seem scandalous that a prize-fighter, for hitting another prize-fighter so hard at Wembley that he fell down and could not rise within ten seconds, received the same sum that was paid to the Archbishop of Canterbury for acting as Primate of the Church of England for nine months; but none of those who cry out against the scandal can express any better in money the difference between the two. Not one of the persons who think that the prize-fighter should get less than the Archbishop can say how much less. What the prize- fighter got for his six or seven months' boxing would pay a judge's salary for two years; and we all agree that nothing could be more ridiculous, and that any system of distributing wealth which leads to such absurdities must be wrong. But to suppose that it could be changed by any possible calculation that an ounce of archbishop of three ounces of judge is worth a pound of prize-fighter would be sillier still. You can find out how many candles are worth a pound of butter in the market on any particular day; but when you try to estimate the worth of human souls the utmost you can say is that they are all of equal value before the throne of God:And that will not help you in the least to settle how much money they should have. You must simply give it up, and admit that distributing money according to merit is beyond mortal measurement and judgement.Which of the following is not a vice attributed to the poor by the rich?
 ....
MCQ-> Analyse the following passage and provide appropriate answers for the follow. Popper claimed, scientific beliefs are universal in character, and have to be so if they are to serve us in explanation and prediction. For the universality of a scientific belief implies that, no matter how many instances we have found positive, there will always be an indefinite number of unexamined instances which may or may not also be positive. We have no good reason for supposing that any of these unexamined instances will be positive, or will be negative, so we must refrain from drawing any conclusions. On the other hand, a single negative instance is sufficient to prove that the belief is false, for such an instance is logically incompatible with the universal truth of the belief. Provided, therefore, that the instance is accepted as negative we must conclude that the scientific belief is false. In short, we can sometimes deduce that a universal scientific belief is false but we can never induce that a universal scientific belief is true. It is sometimes argued that this 'asymmetry' between verification and falsification is not nearly as pronounced as Popper declared it to be. Thus, there is no inconsistency in holding that a universal scientific belief is false despite any number of positive instances; and there is no inconsistency either in holding that a universal scientific belief is true despite the evidence of a negative instance. For the belief that an instance is negative is itself a scientific belief and may be falsified by experimental evidence which we accept and which is inconsistent with it. When, for example, we draw a right-angled triangle on the surface of a sphere using parts of three great circles for its sides, and discover that for this triangle Pythagoras' Theorem does not hold, we may decide that this apparently negative instance is not really negative because it is not a genuine instance at all. Triangles drawn on the surfaces of spheres are not the sort of triangles which fall within the scope of Pythagoras' Theorem. Falsification, that is to say, is no more capable of yielding conclusive rejections of scientific belief than verification is of yielding conclusive acceptances of scientific beliefs. The asymmetry between falsification and verification, therefore, has less logical significance than Popper supposed. We should, though, resist this reasoning. Falsifications may not be conclusive, for the acceptances on which rejections are based are always provisional acceptances. But, nevertheless, it remains the case that, in falsification, if we accept falsifying claims then, to remain consistent, we must reject falsified claims. On the other hand, although verifications are also not conclusive, our acceptance or rejection of verifying instances has no implications concerning the acceptance or rejection of verified claims. Falsifying claims sometimes give us a good reason for rejecting a scientific belief, namely when the claims are accepted. But verifying claims, even when accepted, give us no good and appropriate reason for accepting any scientific belief, because any such reason would have to be inductive to be appropriate and there are no good inductive reasons.According to Popper, the statement "Scientific beliefs are universal in character" implies that....
MCQ-> The membrane-bound nucleus is the most prominent feature of the eukaryotic cell. Schleiden and Schwann, when setting forth the cell doctrine in the 1830s, considered that it had a central role in growth and development. Their belief has been fully supported even though they had only vague notions as to what that role might be, and how the role was to be expressed in some cellular action. The membraneless nuclear area of the prokaryotic cell, with its tangle of fine threads, is now known to play a similar role.Some cells, like the sieve tubes of vascular plants and the red blood cells of mammals, do not possess nuclei during the greater part of their existence, although they had nuclei when in a less differentiated state. Such cells can no longer divide and their life span is limited Other cells are regularly multinucleate. Some, like the cells of striated muscles or the latex vessels of higher plants, become so through cell fusion. Some, like the unicellular protozoan paramecium, are normally binucleate, one of the nuclei serving as a source of hereditary information for the next generation, the other governing the day-to-day metabolic activities of the cell. Still other organisms, such as some fungi, are multinucleate because cross walls, dividing the mycelium into specific cells, are absent or irregularly present. The uninucleate situation, however, is typical for the vast majority of cells, and it would appear that this is the most efficient and most economical manner of partitioning living substance into manageable units. This point of view is given credence not only by the prevalence of uninucleate cells, but because for each kind of cell there is a ratio maintained between the volume of the nucleus and that of the cytoplasm. If we think of the nucleus as the control centre of the cell, this would suggest that for a given kind of cell performing a given kind of work, one nucleus can ‘take care of’ a specific volume of cytoplasm and keep it in functioning order. In terms of material and energy, this must mean providing the kind of information needed to keep flow of materials and energy moving at the correct rate and in the proper channels. With the multitude of enzymes in the cell, materials and energy can of course be channelled in a multitude of ways; it is the function of some information molecules to make channels of use more preferred than others at any given time. How this regulatory control is exercised is not entirely clear.The nucleus is generally a rounded body. In plant cells, however, where the centre of the cell is often occupied by a large vacuole, the nucleus may be pushed against the cell wall, causing it to assume a lens shape. In some white blood cells, such as polymorphonucleated leukocytes, and in cells of the spinning gland of some insects and spiders, the nucleus is very much lobed The reason for this is not clear, but it may relate to the fact that for a given volume of nucleus, a lobate form provides a much greater surface area for nuclear-cytoplasmic exchanges, possibly affecting both the rate and the amount of metabolic reactions. The nucleus, whatever its shape, is segregated from the cytoplasm by a double membrane, the nuclear envelope, with the two membranes separated from each other by a perinuclear space of varying width. The envelope is absent only during the time of cell division, and then just for a brief period The outer membrane is often continuous with the membranes of the endoplasmic reticulum, a possible retention of an earlier relationship, since the envelope, at least in part, is formed at the end cell division by coalescing fragments of the endoplasmic reticulum. The cytoplasmic side of the nucleus is frequently coated with ribosomes, another fact that stresses the similarity and relation of the nuclear envelope to the endoplasmic reticulum. The inner membrane seems to posses a crystalline layer where it abuts the nucleoplasm, but its function remains to be determined.Everything that passes between the cytoplasm and the nucleus in the eukaryotic cell must transverse the nuclear envelope. This includes some fairly large molecules as well as bodies such as ribosomes, which measure about 25 mm in diameter. Some passageway is, therefore, obviously necessary since there is no indication of dissolution of the nuclear envelope in order to make such movement possible. The nuclear pores appear to be reasonable candidates for such passageways. In plant cells these are irregularly, rather sparsely distributed over the surface of the nucleus, but in the amphibian oocyte, for example, the pores are numerous, regularly arranged, and octagonal and are formed by the fusion of the outer and inner membrane.Which of the following kinds of cells never have a nuclei?
 ....
MCQ->A partial auxiliary view is used to show only the ________ in the auxiliary view.....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions