1. Distribution transformer are designed to have maximum efficiency nearly:





Write Comment

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->The maximum possible thermal efficiency of a heat engine is limited by?....
QA->A transformer has a turn ration of 1:If the current in the primary has a peak value of 5A, then the current in the secondary will be :....
QA->Who is the inventor of Transformer?....
QA->What is the quantity that remains unchanged in a transformer?....
QA->Of which irom is Core of transformer made up?....
MCQ-> I suggest that the essential character of the Trade Cycle and, especially, the regularity of time-sequence and of duration which justifies us in calling it a cycle, is mainly due to the way in which the marginal efficiency of capital fluctuates. The Trade Cycle is best regarded, I think, as being occasioned by a cyclical change in the marginal efficiency of capital, though complicated and often aggravated by associated changes in the other significant short period variables of the economic system.By a cyclical movement we mean that as the system progresses in, e.g. the upward direction, the forces propelling it upwards at first gather force and have a cumulative effect on one another but gradually lose their strength until at a certain point they tend to be replaced by forces operating in the opposite direction; which in turn gather force for a time and accentuate one another, until they too, having reached their maximum development, wane and give place to their opposite. We do not, however, merely mean by a cyclical movement that upward and downward tendencies, once started, do not persist for ever in the same direction but are ultimately reversed. We mean also that there is some recognizable degree of regularity in the time-sequence and duration of the upward and downward movements. There is, however, another characteristic of what we call the Trade Cycle which our explanation must cover if it is to be adequate; namely, the phenomenon of the ‘crisis’ the fact that the substitution of a downward for an upward tendency often takes place suddenly and violently, whereas there is, as a rule, no such sharp turning-point when an upward is substituted for a downward tendency. Any fluctuation in investment not offset by a corresponding change in the propensity to consume will, of course, result in a fluctuation in employment. Since, therefore, the volume of investment is subject to highly complex influences, it is highly improbable that all fluctuations either in investment itself or in the marginal efficiency of capital will be of a cyclical character.We have seen above that the marginal efficiency of capital depends, not only on the existing abundance or scarcity of capital-goods and the current cost of production of capital- goods, but also on current expectations as to the future yield of capital-goods. In the case of durable assets it is, therefore, natural and reasonable that expectations of the future should play a dominant part in determining the scale on which new investment is deemed advisable. But, as we have seen, the basis for such expectations is very precarious. Being based on shifting and unreliable evidence, they are subject to sudden and violent changes. Now, we have been accustomed in explaining the ‘crisis’ to lay stress on the rising tendency of the rate of interest under the influence of the increased demand for money both for trade and speculative purposes. At times this factor may certainly play an aggravating and, occasionally perhaps, an initiating part. But I suggest that a more typical, and often the predominant, explanation of the crisis is, not primarily a rise in the rate of interest, but a sudden collapse in the marginal efficiency of capital. The later stages of the boom are characterized by optimistic expectations as to the future yield of capital goods sufficiently strong to offset their growing abundance and their rising costs of production and, probably, a rise in the rate of interest also. It is of the nature of organized investment markets, under the influence of purchasers largely ignorant of what they are buying and of speculators who are more concerned with forecasting the next shift of market sentiment than with a reasonable estimate of the future yield of capital-assets, that, when disillusion falls upon an over-optimistic and over- bought market, it should fall with sudden and even catastrophic force. Moreover, the dismay and uncertainty as to the future which accompanies a collapse in the marginal efficiency of capital naturally precipitates a sharp increase in liquidity-preference and hence a rise in the rate of interest. Thus the fact that a collapse in the marginal efficiency of capital tends to be associated with a rise in the rate of interest may seriously aggravate the decline in investment. But the essence of the situation is to be found, nevertheless, in the collapse in the marginal efficiency of capital, particularly in the case of those types of capital which have been contributing most to the previous phase of heavy new investment. Liquidity preference, except those manifestations of it which are associated with increasing trade and speculation, does not increase until after the collapse in the marginal efficiency of capital. It is this, indeed, which renders the slump so intractable. Which of the following does not describe the features of cyclical movement?
 ....
MCQ-> Read the following passage carefully and answer the questions given. Certain words/phrases have been given in bold to help you locate them while answering some of the questions. From a technical and economic perspective, many assessments have highlighted the presence of cost-effective opportunities to reduce energy use in buildings. However several bodies note the significance of multiple barriers that prevent the take-up of energy efficiency measures in buildings. These include lack of awareness and concern, limited access to reliable information from trusted sources, fear about risk, disruption and other ‘transaction costs’ concerns about up-front costs and inadequate access to suitably priced finance, a lack of confidence in suppliers and technologies and the presence of split incentives between landlords and tenants. The widespread presence of these barriers led experts to predict thatwithout a concerted push from policy, two-thirds of the economically viable potential to improve energy efficiency will remain unexploited by 2035. These barriers are albatross around the neck that represent a classic market failure and a basis for governmental intervention. While these measurements focus on the technical, financial or economic barriers preventing the take-up of energy efficiency options in buildings, others emphasise the significance of the often deeply embedded social practices that shape energy use in buildings. These analyses focus not on the preferences and rationalities that might shape individual behaviours, but on the ‘entangled’ cultural practices, norms, values and routines that underpin domestic energy use. Focusing on the practice-related aspects of consumption generates very different conceptual framings and policy prescriptions than those that emerge from more traditional or mainstream perspectives. But the underlying case for government intervention to help to promote retrofit and the diffusion of more energy efficient particles is still apparent, even though the forms of intervention advocated are often very different to those that emerge from a more technical or economic perspective. Based on the recognition of the multiple barriers to change and the social, economic and environmental benefits that could be realised if they were overcome, government support for retrofit (renovating existing infrastructure to make it more energy efficient) has been widespread. Retrofit programmes have been supported and adopted in diverse forms in many setting and their ability to recruit householders and then to impact their energy use has been discussed quite extensively. Frequently, these discussions have criticised the extent to which retrofit schemes rely on incentives and the provision of new technologies to change behaviour whilst ignoring the many other factors that might limit either participation in the schemes or their impact on the behaviours and prac-tices that shape domestic energy use. These factors are obviously central to the success of retrofit schemes, but evaluations of different schemes have found that despite these they can still have significant impacts. Few experts that the best estimate of the gap between the technical potential and the actual in-situ performance of energy efficiency measures is 50%, with 35% coming from performance gaps and 15% coming from ‘comfort taking’ or direct rebound effects. They further suggest that the direct rebound effect of energy efficiency measures related to household heating is Ilkley to be less than 30% while rebound effects for various domestic energy efficiency measures vary from 5 to 15% and arise mostly from indirect effects (i.e., where savings from energy efficiency lead to increased demand for goods and services). Other analyses also note that the gap between technical potential and actual performance is likely to vary by measure, with the range extending from 0% for measures such as solar water heating to 50% for measures such as improved heating controls. And others note that levels of comfort taking are likely to vary according to the levels of consumption and fuel poverty in the sample of homes where insulation is installed, with the range extending from 30% when considering homes across all income groups to around 60% when considering only lower income homes. The scale of these gapsis significant because it materially affects the impacts of retrofit schemes and expectations and perceptions of these impacts go on to influence levels of political, financial and public support for these schemes. The literature on retrofit highlights the presence of multiple barriers to change and the need for government support, if these are to be overcome. Although much has been written on the extent to which different forms of support enable the wider take-up of domestic energy efficiency measures, behaviours and practices, various areas of contestation remain and there is still an absence of robust ex-post evidence on the extent to which these schemes actually do lead to the social, economic and environmental benefits that are widely claimed.Which of the following is most nearly the OPPOSITE in meaning to the word ‘CONCERTED’ as used in the passage ?
 ....
MCQ-> Read the following passage carefully and answer the given questions. Certain words/phrases are given in bold to help you locate them while answering some of the questions. At first glance the patriarchy appears to be thriving. More than 90% of presidents and prime ministers are male, as are all nearly big corporate bosses. Men dominate finance, technology, films, sports, music and even stand­up comedy. In much of the world they still enjoy social and legal privileges simply because :hey have a Y chromosome. So it might seem odd to worry about the plight of men. Yet there is plenty of cause for concern. Men cluster at the bottom as well at the top. Poorly educated men in rich countries have had difficulty coping with the enormous changes in the labour market and the home over the past half­century. As technology and trade have devalued brawn, less­educated men have struggled to find a role in the workplace. Women, on the other hand, are surging into expanding sectors such as health care and education, helped by their superior skills. As education has become more important, boys have also fallen behind girls in school (except at the very top). Men who lose jobs in manufacturing often never work again. And men without work find it hard to support a family. The result for low­skilled men, is a poisonous combination of no job, no family and no prospects. Some tend to focus on economics. Shrinking job opportunities for men, they say, are entrenching poverty and destroying families. In America pay for men with only a high­school certificate fell by 21% in real terms between 1979 and 2013, for women with similar qualifications it raised by 3%. Around a fifth of working­age American men with only a high­school have no job. But both economic and social changes are to blame, and the two causes reinforce each other. Moreover, these problems are likely to get worse. Technology will disrupt more industries, creating benefits for society but rendering workers who fail to update their skills redundant. The OECD, a think­tank, predicts that the absolute number of single­parent households will continue to rise in nearly all rich countries. Boys who grow up without fathers are more likely to have trouble forming lasting relationships, creating a cycle of male dysfunction. What can be done? Part of the solution lies in a change in cultural attitudes. Over the past generation, men have learned that they need to help with child care and have changed their behaviour. Women have learned that they can be surgeons and physicists not at the cost of motherhood. Policymakers also need to lend a hand, because foolish laws are making the problem worse. Governments need to recognise that boys' underachievement is a serious problem and set about fixing it. Some sensible policies that are good for everybody are particularly good for boys. Early­childhood education provides boys with more structure and a better chance of developing verbal and social skills. Countries with successful vocational systems such as Germany have done a better job motivating non­academic boys and guiding them into jobs, but policymakers need to reinvent vocational education for an age when trainers are more likely to get jobs in hospitals than factories. The growing equality of the genders is one of the biggest achievements of the post­war era people have greater opportunities than ever before to achieve their ambitions regardless of their gender. But some even have failed to cope with this new world. It is time to give them a hand.What do the statistics in the passage with regard to America indicate?
 ....
MCQ->Distribution transformer are designed to have maximum efficiency nearly:....
MCQ-> Read the passage carefully and answer the questions given at the end of each passage:Turning the business involved more than segmenting and pulling out of retail. It also meant maximizing every strength we had in order to boost our profit margins. In re-examining the direct model, we realized that inventory management was not just core strength; it could be an incredible opportunity for us, and one that had not yet been discovered by any of our competitors. In Version 1.0 the direct model, we eliminated the reseller, thereby eliminating the mark-up and the cost of maintaining a store. In Version 1.1, we went one step further to reduce inventory inefficiencies. Traditionally, a long chain of partners was involved in getting a product to the customer. Let’s say you have a factory building a PC we’ll call model #4000. The system is then sent to the distributor, which sends it to the warehouse, which sends it to the dealer, who eventually pushes it on to the consumer by advertising, “I’ve got model #4000. Come and buy it.” If the consumer says, “But I want model #8000,” the dealer replies, “Sorry, I only have model #4000.” Meanwhile, the factory keeps building model #4000s and pushing the inventory into the channel. The result is a glut of model #4000s that nobody wants. Inevitably, someone ends up with too much inventory, and you see big price corrections. The retailer can’t sell it at the suggested retail price, so the manufacturer loses money on price protection (a practice common in our industry of compensating dealers for reductions in suggested selling price). Companies with long, multi-step distribution systems will often fill their distribution channels with products in an attempt to clear out older targets. This dangerous and inefficient practice is called “channel stuffing”. Worst of all, the customer ends up paying for it by purchasing systems that are already out of date Because we were building directly to fill our customers’ orders, we didn’t have finished goods inventory devaluing on a daily basis. Because we aligned our suppliers to deliver components as we used them, we were able to minimize raw material inventory. Reductions in component costs could be passed on to our customers quickly, which made them happier and improved our competitive advantage. It also allowed us to deliver the latest technology to our customers faster than our competitors. The direct model turns conventional manufacturing inside out. Conventional manufacturing, because your plant can’t keep going. But if you don’t know what you need to build because of dramatic changes in demand, you run the risk of ending up with terrific amounts of excess and obsolete inventory. That is not the goal. The concept behind the direct model has nothing to do with stockpiling and everything to do with information. The quality of your information is inversely proportional to the amount of assets required, in this case excess inventory. With less information about customer needs, you need massive amounts of inventory. So, if you have great information – that is, you know exactly what people want and how much - you need that much less inventory. Less inventory, of course, corresponds to less inventory depreciation. In the computer industry, component prices are always falling as suppliers introduce faster chips, bigger disk drives and modems with ever-greater bandwidth. Let’s say that Dell has six days of inventory. Compare that to an indirect competitor who has twenty-five days of inventory with another thirty in their distribution channel. That’s a difference of forty-nine days, and in forty-nine days, the cost of materials will decline about 6 percent. Then there’s the threat of getting stuck with obsolete inventory if you’re caught in a transition to a next- generation product, as we were with those memory chip in 1989. As the product approaches the end of its life, the manufacturer has to worry about whether it has too much in the channel and whether a competitor will dump products, destroying profit margins for everyone. This is a perpetual problem in the computer industry, but with the direct model, we have virtually eliminated it. We know when our customers are ready to move on technologically, and we can get out of the market before its most precarious time. We don’t have to subsidize our losses by charging higher prices for other products. And ultimately, our customer wins. Optimal inventory management really starts with the design process. You want to design the product so that the entire product supply chain, as well as the manufacturing process, is oriented not just for speed but for what we call velocity. Speed means being fast in the first place. Velocity means squeezing time out of every step in the process. Inventory velocity has become a passion for us. To achieve maximum velocity, you have to design your products in a way that covers the largest part of the market with the fewest number of parts. For example, you don’t need nine different disk drives when you can serve 98 percent of the market with only four. We also learned to take into account the variability of the lost cost and high cost components. Systems were reconfigured to allow for a greater variety of low-cost parts and a limited variety of expensive parts. The goal was to decrease the number of components to manage, which increased the velocity, which decreased the risk of inventory depreciation, which increased the overall health of our business system. We were also able to reduce inventory well below the levels anyone thought possible by constantly challenging and surprising ourselves with the result. We had our internal skeptics when we first started pushing for ever-lower levels of inventory. I remember the head of our procurement group telling me that this was like “flying low to the ground 300 knots.” He was worried that we wouldn’t see the trees.In 1993, we had $2.9 billion in sales and $220 million in inventory. Four years later, we posted $12.3 billion in sales and had inventory of $33 million. We’re now down to six days of inventory and we’re starting to measure it in hours instead of days. Once you reduce your inventory while maintaining your growth rate, a significant amount of risk comes from the transition from one generation of product to the next. Without traditional stockpiles of inventory, it is critical to precisely time the discontinuance of the older product line with the ramp-up in customer demand for the newer one. Since we were introducing new products all the time, it became imperative to avoid the huge drag effect from mistakes made during transitions. E&O; – short for “excess and obsolete” - became taboo at Dell. We would debate about whether our E&O; was 30 or 50 cent per PC. Since anything less than $20 per PC is not bad, when you’re down in the cents range, you’re approaching stellar performance.Find out the TRUE statement:
 ....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions