1. Which of the following is common in the disease caused by Coryne-bacterium diphtheriae and Bacillus anthracis?





Write Comment

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->Name the German Physician; who isolated Bacillus Anthracis in1877 is?....
QA->BCG vaccination (Bacillus Calmette Guerine) is injected to get immunity from which disease?....
QA->The bacterium which causes tumors in plants is _____ :....
QA->Which vitamin deficiency disease is also known in the names of "Barlow"s Disease & Cheadle"s disease?....
QA->Syngular or Plural of word Bacterium....
MCQ->Which of the following is common in the disease caused by Coryne-bacterium diphtheriae and Bacillus anthracis?....
MCQ-> Throughout human history the leading causes of death have been infection and trauma, Modem medicine has scored significant victories against both, and the major causes of ill health and death are now the chronic degenerative diseases, such as coronary artery disease, arthritis, osteoporosis, Alzheimer’s, macular degeneration, cataract and cancer. These have a long latency period before symptoms appear and a diagnosis is made. It follows that the majority of apparently healthy people are pre-ill.But are these conditions inevitably degenerative? A truly preventive medicine that focused on the pre-ill, analyzing the metabolic errors which lead to clinical illness, might be able to correct them before the first symptom. Genetic risk factors are known for all the chronic degenerative diseases, and are important to the individuals who possess them. At the population level, however, migration studies confirm that these illnesses are linked for the most part to lifestyle factors — exercise, smoking and nutrition. Nutrition is the easiest of these to change, and the most versatile tool for affecting the metabolic changes needed to tilt the balance away from disease.Many national surveys reveal that malnutrition is common in developed countries. This is not the calorie and/or micronutrient deficiency associated with developing nations (type A malnutrition); but multiple micronutrient depletion, usually combined with calorific balance or excess (Type B malnutrition). The incidence and severity of Type B malnutrition will be shown to be worse if newer micronutrient groups such as the essential fatty acids, xanthophylls and falconoid are included in the surveys. Commonly ingested levels of these micronutrients seem to be far too low in many developed countries.There is now considerable evidence that Type B malnutrition is a major cause of chronic degenerative diseases. If this is the case, then t is logical to treat such diseases not with drugs but with multiple micronutrient repletion, or pharmaco-nutrition’. This can take the form of pills and capsules — ‘nutraceuticals’, or food formats known as ‘functional foods’, This approach has been neglected hitherto because it is relatively unprofitable for drug companies — the products are hard to patent — and it is a strategy which does not sit easily with modem medical interventionism. Over the last 100 years, the drug industry has invested huge sums in developing a range of subtle and powerful drugs to treat the many diseases we are subject to. Medical training is couched in pharmaceutical terms and this approach has provided us with an exceptional range of therapeutic tools in the treatment of disease and in acute medical emergencies. However, the pharmaceutical model has also created an unhealthy dependency culture, in which relatively few of us accept responsibility for maintaining our own health. Instead, we have handed over this responsibility to health professionals who know very little about health maintenance, or disease prevention.One problem for supporters of this argument is lack of the right kind of hard evidence. We have a wealth of epidemiological data linking dietary factors to health profiles/ disease risks, and a great deal of information on mechanism: how food factors interact with our biochemistry. But almost all intervention studies with micronutrients, with the notable exception of the omega 3 fatty acids, have so far produced conflicting or negative results. In other words, our science appears to have no predictive value. Does this invalidate the science? Or are we simply asking the wrong questions?Based on pharmaceutical thinking, most intervention studies have attempted to measure the impact of a single micronutrient on the incidence of disease. The classical approach says that if you give a compound formula to test subjects and obtain positive results, you cannot know which ingredient is exerting the benefit, so you must test each ingredient individually. But in the field of nutrition, this does not work. Each intervention on its own will hardly make enough difference to be measured. The best therapeutic response must therefore combine micronutrients to normalise our internal physiology. So do we need to analyse each individual’s nutritional status and then tailor a formula specifically for him or her? While we do not have the resources to analyze millions of individual cases, there is no need to do so. The vast majority of people are consuming suboptimal amounts of most micronutrients, and most of the micronutrients concerned are very safe. Accordingly, a comprehensive and universal program of micronutrient support is probably the most cost-effective and safest way of improving the general health of the nation.The author recommends micronutrient-repletion for large-scale treatment of chronic degenerative diseases because
 ....
MCQ->Read the following paragraph and answer the question which follows. Fighting the disease reincer is never easy for anyone. However, finding an insurance to be financially prepared for it, definitely is. For the disease requiring a minimum of INR 60 lakh worth medical expenditure, our insurance scheme offers INR 5 lakhs every year for first five years followed by INR 10 lakhs every subsequent yearAn advertisement by an insurance company. Which of the following statements would prove that the insurance policy is flawed in its approach (A) The disease although serious and cash intensive, is total only in 23% of the cases. (B) 75% of the entire amount for treatment is required in the first two of years of contracting the disease. (C) Expenses for treatment of the disease do not fluctuate much based on the intensity of disease and the type of hospitals. (D) If treated within 4 years of contracting the disease, the patient can be completely cured of the disease for life.....
MCQ-> Read the following passage carefully and answer the questions given below it. Certain words/phrases have been printed in bold tohelp you locate them while answering some of the questions. During the last few years, a lot of hype has been heaped on the BRICS (Brazil, Russia, India, China, and South Africa). With their large populations and rapid growth, these countries, so the argument goes, will soon become some of the largest economies in the world and, in the case of China, the largest of all by as early as 2020. But the BRICS, as well as many other emerging-market economieshave recently experienced a sharp economic slowdown. So, is the honeymoon over? Brazil’s GDP grew by only 1% last year, and may not grow by more than 2% this year, with its potential growth barely above 3%. Russia’s economy may grow by barely 2% this year, with potential growth also at around 3%, despite oil prices being around $100 a barrel. India had a couple of years of strong growth recently (11.2% in 2010 and 7.7% in 2011) but slowed to 4% in 2012. China’s economy grew by 10% a year for the last three decades, but slowed to 7.8% last year and risks a hard landing. And South Africa grew by only 2.5% last year and may not grow faster than 2% this year. Many other previously fast-growing emerging-market economies – for example, Turkey, Argentina, Poland, Hungary, and many in Central and Eastern Europe are experiencing a similar slowdown. So, what is ailing the BRICS and other emerging markets? First, most emerging-market economies were overheating in 2010-2011, with growth above potential and inflation rising and exceeding targets. Many of them thus tightened monetary policy in 2011, with consequences for growth in 2012 that have carried over into this year. Second, the idea that emerging-market economies could fully decouple from economic weakness in advanced economies was farfetched : recession in the eurozone, near-recession in the United Kingdom and Japan in 2011-2012, and slow economic growth in the United States were always likely to affect emerging market performance negatively – via trade, financial links, and investor confidence. For example, the ongoing euro zone downturn has hurt Turkey and emergingmarket economies in Central and Eastern Europe, owing to trade links. Third, most BRICS and a few other emerging markets have moved toward a variant of state capitalism. This implies a slowdown in reforms that increase the private sector’s productivity and economic share, together with a greater economic role for state-owned enterprises (and for state-owned banks in the allocation of credit and savings), as well as resource nationalism, trade protectionism, import substitution industrialization policies, and imposition of capital controls. This approach may have worked at earlier stages of development and when the global financial crisis caused private spending to fall; but it is now distorting economic activity and depressing potential growth. Indeed, China’s slowdown reflects an economic model that is, as former Premier Wen Jiabao put it, “unstable, unbalanced, uncoordinated, and unsustainable,” and that now is adversely affecting growth in emerging Asia and in commodity-exporting emerging markets from Asia to Latin America and Africa. The risk that China will experience a hard landing in the next two years may further hurt many emerging economies. Fourth, the commodity super-cycle that helped Brazil, Russia, South Africa, and many other commodity-exporting emerging markets may be over. Indeed, a boom would be difficult to sustain, given China’s slowdown, higher investment in energysaving technologies, less emphasis on capital-and resource-oriented growth models around the world, and the delayed increase in supply that high prices induced. The fifth, and most recent, factor is the US Federal Reserve’s signals that it might end its policy of quantitative easing earlier than expected, and its hints of an even tual exit from zero interest rates. both of which have caused turbulence in emerging economies’ financial markets. Even before the Fed’s signals, emergingmarket equities and commodities had underperformed this year, owing to China’s slowdown. Since then, emerging-market currencies and fixed-income securities (government and corporate bonds) have taken a hit. The era of cheap or zerointerest money that led to a wall of liquidity chasing high yields and assets equities, bonds, currencies, and commodities – in emerging markets is drawing to a close. Finally, while many emerging-market economies tend to run current-account surpluses, a growing number of them – including Turkey, South Africa, Brazil, and India – are running deficits. And these deficits are now being financed in riskier ways: more debt than equity; more short-term debt than longterm debt; more foreign-currency debt than local-currency debt; and more financing from fickle cross-border interbank flows. These countries share other weaknesses as well: excessive fiscal deficits, abovetarget inflation, and stability risk (reflected not only in the recent political turmoil in Brazil and Turkey, but also in South Africa’s labour strife and India’s political and electoral uncertainties). The need to finance the external deficit and to avoid excessive depreciation (and even higher inflation) calls for raising policy rates or keeping them on hold at high levels. But monetary tightening would weaken already-slow growth. Thus, emerging economies with large twin deficits and other macroeconomic fragilities may experience further downward pressure on their financial markets and growth rates. These factors explain why growth in most BRICS and many other emerging markets has slowed sharply. Some factors are cyclical, but others – state capitalism, the risk of a hard landing in China, the end of the commodity supercycle -are more structural. Thus, many emerging markets’ growth rates in the next decade may be lower than in the last – as may the outsize returns that investors realised from these economies’ financial assets (currencies, equities. bonds, and commodities). Of course, some of the better-managed emerging-market economies will continue to experitnce rapid growth and asset outperformance. But many of the BRICS, along with some other emerging economies, may hit a thick wall, with growth and financial markets taking a serious beating.Which of the following statement(s) is/are true as per the given information in the passage ? A. Brazil’s GDP grew by only 1% last year, and is expected to grow by approximately 2% this year. B. China’s economy grew by 10% a year for the last three decades but slowed to 7.8% last year. C. BRICS is a group of nations — Barzil, Russia, India China and South Africa.....
MCQ-> The current debate on intellectual property rights (IPRs) raises a number of important issues concerning the strategy and policies for building a more dynamic national agricultural research system, the relative roles of public and private sectors, and the role of agribusiness multinational corporations (MNCs). This debate has been stimulated by the international agreement on Trade Related Intellectual Property Rights (TRIPs), negotiated as part of the Uruguay Round. TRIPs, for the first time, seeks to bring innovations in agricultural technology under a new worldwide IPR regime. The agribusiness MNCs (along with pharmaceutical companies) played a leading part in lobbying for such a regime during the Uruguay Round negotiations. The argument was that incentives are necessary to stimulate innovations, and that this calls for a system of patents which gives innovators the sole right to use (or sell/lease the right to use) their innovations for a specified period and protects them against unauthorised copying or use. With strong support of their national governments, they were influential in shaping the agreement on TRIPs, which eventually emerged from the Uruguay Round. The current debate on TRIPs in India - as indeed elsewhere - echoes wider concerns about ‘privatisation’ of research and allowing a free field for MNCs in the sphere of biotechnology and agriculture. The agribusiness corporations, and those with unbounded faith in the power of science to overcome all likely problems, point to the vast potential that new technology holds for solving the problems of hunger, malnutrition and poverty in the world. The exploitation of this potential should be encouraged and this is best done by the private sector for which patents are essential. Some, who do not necessarily accept this optimism, argue that fears of MNC domination are exaggerated and that farmers will accept their products only if they decisively outperform the available alternatives. Those who argue against agreeing to introduce an IPR regime in agriculture and encouraging private sector research are apprehensive that this will work to the disadvantage of farmers by making them more and more dependent on monopolistic MNCs. A different, though related apprehension is that extensive use of hybrids and genetically engineered new varieties might increase the vulnerability of agriculture to outbreaks of pests and diseases. The larger, longer-term consequences of reduced biodiversity that may follow from the use of specially bred varieties are also another cause for concern. Moreover, corporations, driven by the profit motive, will necessarily tend to underplay, if not ignore, potential adverse consequences, especially those which are unknown and which may manifest themselves only over a relatively long period. On the other hand, high-pressure advertising and aggressive sales campaigns by private companies can seduce farmers into accepting varieties without being aware of potential adverse effects and the possibility of disastrous consequences for their livelihood if these varieties happen to fail. There is no provision under the laws, as they now exist, for compensating users against such eventualities. Excessive preoccupation with seeds and seed material has obscured other important issues involved in reviewing the research policy. We need to remind ourselves that improved varieties by themselves are not sufficient for sustained growth of yields. in our own experience, some of the early high yielding varieties (HYVs) of rice and wheat were found susceptible to widespread pest attacks; and some had problems of grain quality. Further research was necessary to solve these problems. This largely successful research was almost entirely done in public research institutions. Of course, it could in principle have been done by private companies, but whether they choose to do so depends crucially on the extent of the loss in market for their original introductions on account of the above factors and whether the companies are financially strong enough to absorb the ‘losses’, invest in research to correct the deficiencies and recover the lost market. Public research, which is not driven by profit, is better placed to take corrective action. Research for improving common pool resource management, maintaining ecological health and ensuring sustainability is both critical and also demanding in terms of technological challenge and resource requirements. As such research is crucial to the impact of new varieties, chemicals and equipment in the farmer’s field, private companies should be interested in such research. But their primary interest is in the sale of seed materials, chemicals, equipment and other inputs produced by them. Knowledge and techniques for resource management are not ‘marketable’ in the same way as those inputs. Their application to land, water and forests has a long gestation and their efficacy depends on resolving difficult problems such as designing institutions for proper and equitable management of common pool resources. Public or quasi-public research institutions informed by broader, long-term concerns can only do such work. The public sector must therefore continue to play a major role in the national research system. It is both wrong and misleading to pose the problem in terms of public sector versus private sector or of privatisation of research. We need to address problems likely to arise on account of the public-private sector complementarity, and ensure that the public research system performs efficiently. Complementarity between various elements of research raises several issues in implementing an IPR regime. Private companies do not produce new varieties and inputs entirely as a result of their own research. Almost all technological improvement is based on knowledge and experience accumulated from the past, and the results of basic and applied research in public and quasi-public institutions (universities, research organisations). Moreover, as is increasingly recognised, accumulated stock of knowledge does not reside only in the scientific community and its academic publications, but is also widely diffused in traditions and folk knowledge of local communities all over. The deciphering of the structure and functioning of DNA forms the basis of much of modern biotechnology. But this fundamental breakthrough is a ‘public good’ freely accessible in the public domain and usable free of any charge. Various techniques developed using that knowledge can however be, and are, patented for private profit. Similarly, private corporations draw extensively, and without any charge, on germplasm available in varieties of plants species (neem and turmeric are by now famous examples). Publicly funded gene banks as well as new varieties bred by public sector research stations can also be used freely by private enterprises for developing their own varieties and seek patent protection for them. Should private breeders be allowed free use of basic scientific discoveries? Should the repositories of traditional knowledge and germplasm be collected which are maintained and improved by publicly funded organisations? Or should users be made to pay for such use? If they are to pay, what should be the basis of compensation? Should the compensation be for individuals or (or communities/institutions to which they belong? Should individual institutions be given the right of patenting their innovations? These are some of the important issues that deserve more attention than they now get and need serious detailed study to evolve reasonably satisfactory, fair and workable solutions. Finally, the tendency to equate the public sector with the government is wrong. The public space is much wider than government departments and includes co- operatives, universities, public trusts and a variety of non-governmental organisations (NGOs). Giving greater autonomy to research organisations from government control and giving non- government public institutions the space and resources to play a larger, more effective role in research, is therefore an issue of direct relevance in restructuring the public research system.Which one of the following statements describes an important issue, or important issues, not being raised in the context of the current debate on IPRs?
 ....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions