1. The heat absorbed or rejected by the working substance is given by (where ds = Increase or decrease of entropy, T = Absolute temperature, and dQ = Heat absorbed or rejected)





Write Comment

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->When temperature is gradually decreased; what is the specific heat of substance?....
QA->When temperature is gradually decreased, what is the specific heat of substance?....
QA->What does Every object at a temperature above absolute zero?....
QA->At absolute zero temperature; what will be the kinetic energy of the molecules?....
QA->At absolute zero temperature, what will be the kinetic energy of the molecules?....
MCQ->The heat absorbed or rejected by the working substance is given by (where ds = Increase or decrease of entropy, T = Absolute temperature, and dQ = Heat absorbed or rejected)....
MCQ-> The broad scientific understanding today is that our planet is experiencing a warming trend over and above natural and normal variations that is almost certainly due to human activities associated with large-scale manufacturing. The process began in the late 1700s with the Industrial Revolution, when manual labor, horsepower, and water power began to be replaced by or enhanced by machines. This revolution, over time, shifted Britain, Europe, and eventually North America from largely agricultural and trading societies to manufacturing ones, relying on machinery and engines rather than tools and animals.The Industrial Revolution was at heart a revolution in the use of energy and power. Its beginning is usually dated to the advent of the steam engine, which was based on the conversion of chemical energy in wood or coal to thermal energy and then to mechanical work primarily the powering of industrial machinery and steam locomotives. Coal eventually supplanted wood because, pound for pound, coal contains twice as much energy as wood (measured in BTUs, or British thermal units, per pound) and because its use helped to save what was left of the world's temperate forests. Coal was used to produce heat that went directly into industrial processes, including metallurgy, and to warm buildings, as well as to power steam engines. When crude oil came along in the mid- 1800s, still a couple of decades before electricity, it was burned, in the form of kerosene, in lamps to make light replacing whale oil. It was also used to provide heat for buildings and in manufacturing processes, and as a fuel for engines used in industry and propulsion.In short, one can say that the main forms in which humans need and use energy are for light, heat, mechanical work and motive power, and electricity which can be used to provide any of the other three, as well as to do things that none of those three can do, such as electronic communications and information processing. Since the Industrial Revolution, all these energy functions have been powered primarily, but not exclusively, by fossil fuels that emit carbon dioxide (CO2), To put it another way, the Industrial Revolution gave a whole new prominence to what Rochelle Lefkowitz, president of Pro-Media Communications and an energy buff, calls "fuels from hell" - coal, oil, and natural gas. All these fuels from hell come from underground, are exhaustible, and emit CO2 and other pollutants when they are burned for transportation, heating, and industrial use. These fuels are in contrast to what Lefkowitz calls "fuels from heaven" -wind, hydroelectric, tidal, biomass, and solar power. These all come from above ground, are endlessly renewable, and produce no harmful emissions.Meanwhile, industrialization promoted urbanization, and urbanization eventually gave birth to suburbanization. This trend, which was repeated across America, nurtured the development of the American car culture, the building of a national highway system, and a mushrooming of suburbs around American cities, which rewove the fabric of American life. Many other developed and developing countries followed the American model, with all its upsides and downsides. The result is that today we have suburbs and ribbons of highways that run in, out, and around not only America s major cities, but China's, India's, and South America's as well. And as these urban areas attract more people, the sprawl extends in every direction.All the coal, oil, and natural gas inputs for this new economic model seemed relatively cheap, relatively inexhaustible, and relatively harmless-or at least relatively easy to clean up afterward. So there wasn't much to stop the juggernaut of more people and more development and more concrete and more buildings and more cars and more coal, oil, and gas needed to build and power them. Summing it all up, Andy Karsner, the Department of Energy's assistant secretary for energy efficiency and renewable energy, once said to me: "We built a really inefficient environment with the greatest efficiency ever known to man."Beginning in the second half of the twentieth century, a scientific understanding began to emerge that an excessive accumulation of largely invisible pollutants-called greenhouse gases - was affecting the climate. The buildup of these greenhouse gases had been under way since the start of the Industrial Revolution in a place we could not see and in a form we could not touch or smell. These greenhouse gases, primarily carbon dioxide emitted from human industrial, residential, and transportation sources, were not piling up along roadsides or in rivers, in cans or empty bottles, but, rather, above our heads, in the earth's atmosphere. If the earth's atmosphere was like a blanket that helped to regulate the planet's temperature, the CO2 buildup was having the effect of thickening that blanket and making the globe warmer.Those bags of CO2 from our cars float up and stay in the atmosphere, along with bags of CO2 from power plants burning coal, oil, and gas, and bags of CO2 released from the burning and clearing of forests, which releases all the carbon stored in trees, plants, and soil. In fact, many people don't realize that deforestation in places like Indonesia and Brazil is responsible for more CO2 than all the world's cars, trucks, planes, ships, and trains combined - that is, about 20 percent of all global emissions. And when we're not tossing bags of carbon dioxide into the atmosphere, we're throwing up other greenhouse gases, like methane (CH4) released from rice farming, petroleum drilling, coal mining, animal defecation, solid waste landfill sites, and yes, even from cattle belching. Cattle belching? That's right-the striking thing about greenhouse gases is the diversity of sources that emit them. A herd of cattle belching can be worse than a highway full of Hummers. Livestock gas is very high in methane, which, like CO2, is colorless and odorless. And like CO2, methane is one of those greenhouse gases that, once released into the atmosphere, also absorb heat radiating from the earth's surface. "Molecule for molecule, methane's heat-trapping power in the atmosphere is twenty-one times stronger than carbon dioxide, the most abundant greenhouse gas.." reported Science World (January 21, 2002). “With 1.3 billion cows belching almost constantly around the world (100 million in the United States alone), it's no surprise that methane released by livestock is one of the chief global sources of the gas, according to the U.S. Environmental Protection Agency ... 'It's part of their normal digestion process,' says Tom Wirth of the EPA. 'When they chew their cud, they regurgitate [spit up] some food to rechew it, and all this gas comes out.' The average cow expels 600 liters of methane a day, climate researchers report." What is the precise scientific relationship between these expanded greenhouse gas emissions and global warming? Experts at the Pew Center on Climate Change offer a handy summary in their report "Climate Change 101. " Global average temperatures, notes the Pew study, "have experienced natural shifts throughout human history. For example; the climate of the Northern Hemisphere varied from a relatively warm period between the eleventh and fifteenth centuries to a period of cooler temperatures between the seventeenth century and the middle of the nineteenth century. However, scientists studying the rapid rise in global temperatures during the late twentieth century say that natural variability cannot account for what is happening now." The new factor is the human factor-our vastly increased emissions of carbon dioxide and other greenhouse gases from the burning of fossil fuels such as coal and oil as well as from deforestation, large-scale cattle-grazing, agriculture, and industrialization.“Scientists refer to what has been happening in the earth’s atmosphere over the past century as the ‘enhanced greenhouse effect’”, notes the Pew study. By pumping man- made greenhouse gases into the atmosphere, humans are altering the process by which naturally occurring greenhouse gases, because of their unique molecular structure, trap the sun’s heat near the earth’s surface before that heat radiates back into space."The greenhouse effect keeps the earth warm and habitable; without it, the earth's surface would be about 60 degrees Fahrenheit colder on average. Since the average temperature of the earth is about 45 degrees Fahrenheit, the natural greenhouse effect is clearly a good thing. But the enhanced greenhouse effect means even more of the sun's heat is trapped, causing global temperatures to rise. Among the many scientific studies providing clear evidence that an enhanced greenhouse effect is under way was a 2005 report from NASA's Goddard Institute for Space Studies. Using satellites, data from buoys, and computer models to study the earth's oceans, scientists concluded that more energy is being absorbed from the sun than is emitted back to space, throwing the earth's energy out of balance and warming the globe."Which of the following statements is correct? (I) Greenhouse gases are responsible for global warming. They should be eliminated to save the planet (II) CO2 is the most dangerous of the greenhouse gases. Reduction in the release of CO2 would surely bring down the temperature (III) The greenhouse effect could be traced back to the industrial revolution. But the current development and the patterns of life have enhanced their emissions (IV) Deforestation has been one of the biggest factors contributing to the emission of greenhouse gases Choose the correct option:....
MCQ-> Read the following passages carefully and answer the questions given at the end of each passage.PASSAGE 3Typically women participate in the labour force at a very high rate in poor rural countries. The participation rate then falls as countries industrialise and move into the middle income class. Finally, if the country grows richer still, more families have the resources for higher education for women and from there they often enter the labour force in large numbers. Usually, economic growth goes hand in hand with emancipation of women. Among rich countries according to a 2015 study, female labour force participation ranges from nearly 80 percent in Switzerland to 70 percent in Germany and less than 60 Percent in the United States and Japan. Only 68 Percent of Canadian omen participated in the workforce in 1990; two decades later that increased to 74 Percent largely due to reforms including tax cuts for second earners and new childcare services. In Netherlands the female labour participation rate doubled since 1980 to 74 Percent as a result of expanded parental leave policies and the spread of flexible, part time working arrangements. In a 2014 survey of 143 emerging countries, the World Bank found that 90 Percent have at least one law that limits the economic opportunities available to women. These laws include bans or limitations on women owning property, opening a bank account, signing a contract, entering a courtroom, travelling alone, driving or controlling family finances. Such restrictions are particularly prevalent in the Middle East and South Asia with the world’s lowest female labour force participation, 26 and 35 percent respectively. According to date available with the International Labour Organisation (ILO), between 2004 and 2011, when the Indian economy grew at a healthy average of about 7 percent, there was a decline in female participation in the country’s labour force from over 35 percent to 25 percent. India also posted the lowest rate of female participation in the workforce among BRIC countries. India’s performance in female workforce participation stood at 27 percent, significantly behind China (64 percent), Brazil (59 percent), Russian Federation (57 percent), and South Africa (45 percent). The number of working women in India had climbed between 2000 and 2005, increasing from 34 percent to 37 percent, but since then the rate of women in the workforce has to fallen to 27 percent as of 2014, said the report citing data from the World Bank. The gap between male and female workforce participation in urban areas in 2011 stood at 40 percent, compared to rural areas where the gap was about 30 percent. However, in certain sectors like financial services, Indian women lead the charge. While only one in 10 Indian companies are led by women, more than half of them are in the financial sector. Today, women head both the top public and private banks in India. Another example is India’s aviation sector, 11.7 percent of India’s 5,100 pilots are women, versus 3 percent worldwide. But these successes only represent a small of women in the country. India does poorly in comparison to its neighbours despite a more robust economic growth. In comparison to India, women in Bangladesh have increased their participation in the labour market, which is due to the growth of the ready- made garment sector and a push to rural female employment. In 2015, women comprised of 43 percent of the labour force in Bangladesh. The rate has also increased in Pakistan, albeit from a very low starting point, while participation has remained relatively stable in Sri Lanka. Myanmar with 79 percent and Malaysia with 49 percent are also way ahead of India. Lack of access to higher education, fewer job opportunities, the lack of flexibility in working conditions, as well as domestic duties are cited as factors behind the low rates. Marriage significantly reduced the probability of women working by about 8 percent in rural areas and more than twice as much in urban areas, said an Assocham report. ILO attributes this to three factors: increasing educational enrolment, improvement in earning of male workers that discourage women’s economic participation, and lack of employment opportunities at certain levels of skills and qualifications discouraging women to seek work. The hurdles to working women often involve a combination of written laws and cultural norms. Cultures don’t change overnight but laws can. The IMF says that even a small step such as countries granting women the right to open a bank account can lead to substantial increase in female labour force participation over the next seven years. According to the United Nations Economic and Social Commission for Asia and the Pacific (ESCAP), even a 10 percent increase in women participating in the workforce can boost gross domestic product (GDP) by 0.3 percent. The OECD recently estimated that eliminating the gender gap would lead to an overall increase in GDP of 12 percent in its member nations between 2015 and 2030. The GDP gains would peak close to 20 percent in both Japan and South Korea and more than 20 percent in Italy. A similar analysis by Booz and Company showed that closing gender gap in emerging countries could yield even larger gains in GDP by 2020, ranging from a 34 percent gain in Egypt to 27 percent in India and 9 percent in Brazil. According to the above passage, though there are many reasons for low female labour force participation, the most important focus of the passage is on
 ....
MCQ-> Modern science, exclusive of geometry, is a comparatively recent creation and can be said to have originated with Galileo and Newton. Galileo was the first scientist to recognize clearly that the only way to further our understanding of the physical world was to resort to experiment. However obvious Galileo’s contention may appear in the light of our present knowledge, it remains a fact that the Greeks, in spite of their proficiency in geometry, never seem to have realized the importance of experiment. To a certain extent this may be attributed to the crudeness of their instruments of measurement. Still an excuse of this sort can scarcely be put forward when the elementary nature of Galileo’s experiments and observations is recalled. Watching a lamp oscillate in the cathedral of Pisa, dropping bodies from the leaning tower of Pisa, rolling balls down inclined planes, noticing the magnifying effect of water in a spherical glass vase, such was the nature of Galileo’s experiments and observations. As can be seen, they might just as well have been performed by the Greeks. At any rate, it was thanks to such experiments that Galileo discovered the fundamental law of dynamics, according to which the acceleration imparted to a body is proportional to the force acting upon it.The next advance was due to Newton, the greatest scientist of all time if account be taken of his joint contributions to mathematics and physics. As a physicist, he was of course an ardent adherent of the empirical method, but his greatest title to fame lies in another direction. Prior to Newton, mathematics, chiefly in the form of geometry, had been studied as a fine art without any view to its physical applications other than in very trivial cases. But with Newton all the resources of mathematics were turned to advantage in the solution of physical problems. Thenceforth mathematics appeared as an instrument of discovery, the most powerful one known to man, multiplying the power of thought just as in the mechanical domain the lever multiplied our physical action. It is this application of mathematics to the solution of physical problems, this combination of two separate fields of investigation, which constitutes the essential characteristic of the Newtonian method. Thus problems of physics were metamorphosed into problems of mathematics.But in Newton’s day the mathematical instrument was still in a very backward state of development. In this field again Newton showed the mark of genius by inventing the integral calculus. As a result of this remarkable discovery, problems, which would have baffled Archimedes, were solved with ease. We know that in Newton’s hands this new departure in scientific method led to the discovery of the law of gravitation. But here again the real significance of Newton’s achievement lay not so much in the exact quantitative formulation of the law of attraction, as in his having established the presence of law and order at least in one important realm of nature, namely, in the motions of heavenly bodies. Nature thus exhibited rationality and was not mere blind chaos and uncertainty. To be sure, Newton’s investigations had been concerned with but a small group of natural phenomena, but it appeared unlikely that this mathematical law and order should turn out to be restricted to certain special phenomena; and the feeling was general that all the physical processes of nature would prove to be unfolding themselves according to rigorous mathematical laws.When Einstein, in 1905, published his celebrated paper on the electrodynamics of moving bodies, he remarked that the difficulties, which surrouned the equations of electrodynamics, together with the negative experiments of Michelson and others, would be obviated if we extended the validity of the Newtonian principle of the relativity of Galilean motion, which applies solely to mechanical phenomena, so as to include all manner of phenomena: electrodynamics, optical etc. When extended in this way the Newtonian principle of relativity became Einstein’s special principle of relativity. Its significance lay in its assertion that absolute Galilean motion or absolute velocity must ever escape all experimental detection. Henceforth absolute velocity should be conceived of as physically meaningless, not only in the particular ream of mechanics, as in Newton’s day, but in the entire realm of physical phenomena. Einstein’s special principle, by adding increased emphasis to this relativity of velocity, making absolute velocity metaphysically meaningless, created a still more profound distinction between velocity and accelerated or rotational motion. This latter type of motion remained absolute and real as before. It is most important to understand this point and to realize that Einstein’s special principle is merely an extension of the validity of the classical Newtonian principle to all classes of phenomena.According to the author, why did the Greeks NOT conduct experiments to understand the physical world?
 ....
MCQ->If the solubilities of different components (in a liquid-liquid extraction system) increase with rise in temperature, then the temperature above which they dissolve completely is known as the critical solution temperature (CST or consolute temperature). If solubilities increase with decrease in temperature, then CST is the temperature below which they dissolve completely. If a binary system has no critical solution temperature, it implies that....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions