1. Coefficient of discharge Cd is equal to (where Cc = Coefficient of contraction, Cv = Coefficient of velocity, and Cr = Coefficient of resistance)





Write Comment

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->The electronic record for recording of electric variations that occur during contraction of muscles of heart is?....
QA->If an officer is appointed to discharge the current duties of another post in addition to his own, he will be eligible for a special allowance as a percentage of the minimum of the scale of pay of the additional post. This percentage shall not exceed:....
QA->From which the cathode ray particles originate in a discharge tube?....
QA->ALL ARE EQUAL, BUT SOME ARE MORE EQUAL THAN OTHERS WHO SAID THIS....
QA->Willful and persistent resistance to lawful authority....
MCQ-> Read the following passage carefully and answer the questions given at the end.Passage 4Public sector banks (PSBs) are pulling back on credit disbursement to lower rated companies, as they keep a closer watch on using their own scarce capital and the banking regulator heightens its scrutiny on loans being sanctioned. Bankers say the Reserve Bank of India has started strictly monitoring how banks are utilizing their capital. Any big-ticket loan to lower rated companies is being questioned. Almost all large public sector banks that reported their first quarter results so far have showed a contraction in credit disbursal on a year-to-date basis, as most banks have shifted to a strategy of lending largely to government-owned "Navratna" companies and highly rated private sector companies. On a sequential basis too, banks have grown their loan book at an anaemic rate.To be sure, in the first quarter, loan demand is not quite robust. However, in the first quarter last year, banks had healthier loan growth on a sequential basis than this year. The country's largest lender State Bank of India grew its loan book at only 1.21% quarter-on-quarter. Meanwhile, Bank of Baroda and Punjab National Bank shrank their loan book by 1.97% and 0.66% respectively in the first quarter on a sequential basis.Last year, State Bank of India had seen sequential loan growth of 3.37%, while Bank of Baroda had seen a smaller contraction of 0.22%. Punjab National Bank had seen a growth of 0.46% in loan book between the January-March and April-June quarters last year. On a year-to-date basis, SBI's credit growth fell more than 2%, Bank of Baroda's credit growth contracted 4.71% and Bank of India's credit growth shrank about 3%. SBI chief Arundhati Bhattacharya said the bank's year-to-date credit growth fell as the bank focused on ‘A’ rated customers. About 90% of the loans in the quarter were given to high-rated companies. "Part of this was a conscious decision and part of it is because we actually did not get good fresh proposals in the quarter," Bhattacharya said.According to bankers, while part of the credit contraction is due to the economic slowdown, capital constraints and reluctance to take on excessive risk has also played a role. "Most of the PSU banks are facing pressure on capital adequacy. It is challenging to maintain 9% core capital adequacy. The pressure on monitoring capital adequacy and maintaining capital buffer is so strict that you cannot grow aggressively," said Rupa Rege Nitsure, chief economist at Bank of Baroda.Nitsure said capital conservation pressures will substantially cut down "irrational expansion of loans" in some smaller banks, which used to grow at a rate much higher than the industry average. The companies coming to banks, in turn, will have to make themselves more creditworthy for banks to lend. "The conservation of capital is going to inculcate a lot of discipline in both banks and borrowers," she said.For every loan that a bank disburses, some amount of money is required to be set aside as provision. Lower the credit rating of the company, riskier the loan is perceived to be. Thus, the bank is required to set aside more capital for a lower rated company than what it otherwise would do for a higher rated client. New international accounting norms, known as Basel III norms, require banks to maintain higher capital and higher liquidity. They also require a bank to set aside "buffer" capital to meet contingencies. As per the norms, a bank's total capital adequacy ratio should be 12% at any time, in which tier-I, or the core capital, should be at 9%. Capital adequacy is calculated by dividing total capital by risk-weighted assets. If the loans have been given to lower rated companies, risk weight goes up and capital adequacy falls.According to bankers, all loan decisions are now being assessed on the basis of the capital that needs to be set aside as provision against the loan and as a result, loans to lower rated companies are being avoided. According to a senior banker with a public sector bank, the capital adequacy situation is so precarious in some banks that if the risk weight increases a few basis points, the proposal gets cancelled. The banker did not wish to be named. One basis point is one hundredth of a percentage point. Bankers add that the Reserve Bank of India has also started strictly monitoring how banks are utilising their capital. Any big-ticket loan to lower rated companies is being questioned.In this scenario, banks are looking for safe bets, even if it means that profitability is being compromised. "About 25% of our loans this quarter was given to Navratna companies, who pay at base rate. This resulted in contraction of our net interest margin (NIM)," said Bank of India chairperson V.R. Iyer, while discussing the bank's first quarter results with the media. Bank of India's NIM, or the difference between yields on advances and cost of deposits, a key gauge of profitability, fell in the first quarter to 2.45% from 3.07% a year ago, as the bank focused on lending to highly rated customers.Analysts, however, say the strategy being followed by banks is short-sighted. "A high rated client will take loans at base rate and will not give any fee income to a bank. A bank will never be profitable that way. Besides, there are only so many PSU companies to chase. All banks cannot be chasing them all at a time. Fact is, the banks are badly hit by NPA and are afraid to lend now to big projects. They need capital, true, but they have become risk-averse," said a senior analyst with a local brokerage who did not wish to be named.Various estimates suggest that Indian banks would require more than Rs. 2 trillion of additional capital to have this kind of capital adequacy ratio by 2019. The central government, which owns the majority share of these banks, has been cutting down on its commitment to recapitalize the banks. In 2013-14, the government infused Rs. 14,000 crore in its banks. However, in 2014-15, the government will infuse just Rs. 11,200 crore.Which of the following statements is correct according to the passage?
 ....
MCQ->Coefficient of discharge Cd is equal to (where Cc = Coefficient of contraction, Cv = Coefficient of velocity, and Cr = Coefficient of resistance)....
MCQ->Co-efficient of discharge (Cd) is defined as actual discharge/theoretical discharge and is equal to Cc . Cv; where Cc = Co-efficient of contraction and Cv = co-efficient of velocity. Cd of an orifice is usually about....
MCQ-> In a modern computer, electronic and magnetic storage technologies play complementary roles. Electronic memory chips are fast but volatile (their contents are lost when the computer is unplugged). Magnetic tapes and hard disks are slower, but have the advantage that they are non-volatile, so that they can be used to store software and documents even when the power is off.In laboratories around the world, however, researchers are hoping to achieve the best of both worlds. They are trying to build magnetic memory chips that could be used in place of today’s electronics. These magnetic memories would be nonvolatile; but they would also he faster, would consume less power, and would be able to stand up to hazardous environments more easily. Such chips would have obvious applications in storage cards for digital cameras and music- players; they would enable handheld and laptop computers to boot up more quickly and to operate for longer; they would allow desktop computers to run faster; they would doubtless have military and space-faring advantages too. But although the theory behind them looks solid, there are tricky practical problems and need to be overcome.Two different approaches, based on different magnetic phenomena, are being pursued. The first, being investigated by Gary Prinz and his colleagues at the Naval Research Laboratory (NRL) in Washington, D.c), exploits the fact that the electrical resistance of some materials changes in the presence of magnetic field— a phenomenon known as magneto- resistance. For some multi-layered materials this effect is particularly powerful and is, accordingly, called “giant” magneto-resistance (GMR). Since 1997, the exploitation of GMR has made cheap multi-gigabyte hard disks commonplace. The magnetic orientations of the magnetised spots on the surface of a spinning disk are detected by measuring the changes they induce in the resistance of a tiny sensor. This technique is so sensitive that it means the spots can be made smaller and packed closer together than was previously possible, thus increasing the capacity and reducing the size and cost of a disk drive. Dr. Prinz and his colleagues are now exploiting the same phenomenon on the surface of memory chips, rather spinning disks. In a conventional memory chip, each binary digit (bit) of data is represented using a capacitor-reservoir of electrical charge that is either empty or fill -to represent a zero or a one. In the NRL’s magnetic design, by contrast, each bit is stored in a magnetic element in the form of a vertical pillar of magnetisable material. A matrix of wires passing above and below the elements allows each to be magnetised, either clockwise or anti-clockwise, to represent zero or one. Another set of wires allows current to pass through any particular element. By measuring an element’s resistance you can determine its magnetic orientation, and hence whether it is storing a zero or a one. Since the elements retain their magnetic orientation even when the power is off, the result is non-volatile memory. Unlike the elements of an electronic memory, a magnetic memory’s elements are not easily disrupted by radiation. And compared with electronic memories, whose capacitors need constant topping up, magnetic memories are simpler and consume less power. The NRL researchers plan to commercialise their device through a company called Non-V olatile Electronics, which recently began work on the necessary processing and fabrication techniques. But it will be some years before the first chips roll off the production line.Most attention in the field in focused on an alternative approach based on magnetic tunnel-junctions (MTJs), which are being investigated by researchers at chipmakers such as IBM, Motorola, Siemens and Hewlett-Packard. IBM’s research team, led by Stuart Parkin, has already created a 500-element working prototype that operates at 20 times the speed of conventional memory chips and consumes 1% of the power. Each element consists of a sandwich of two layers of magnetisable material separated by a barrier of aluminium oxide just four or five atoms thick. The polarisation of lower magnetisable layer is fixed in one direction, but that of the upper layer can be set (again, by passing a current through a matrix of control wires) either to the left or to the right, to store a zero or a one. The polarisations of the two layers are then either the same or opposite directions.Although the aluminum-oxide barrier is an electrical insulator, it is so thin that electrons are able to jump across it via a quantum-mechanical effect called tunnelling. It turns out that such tunnelling is easier when the two magnetic layers are polarised in the same direction than when they are polarised in opposite directions. So, by measuring the current that flows through the sandwich, it is possible to determine the alignment of the topmost layer, and hence whether it is storing a zero or a one.To build a full-scale memory chip based on MTJs is, however, no easy matter. According to Paulo Freitas, an expert on chip manufacturing at the Technical University of Lisbon, magnetic memory elements will have to become far smaller and more reliable than current prototypes if they are to compete with electronic memory. At the same time, they will have to be sensitive enough to respond when the appropriate wires in the control matrix are switched on, but not so sensitive that they respond when a neighbouring elements is changed. Despite these difficulties, the general consensus is that MTJs are the more promising ideas. Dr. Parkin says his group evaluated the GMR approach and decided not to pursue it, despite the fact that IBM pioneered GMR in hard disks. Dr. Prinz, however, contends that his plan will eventually offer higher storage densities and lower production costs.Not content with shaking up the multi-billion-dollar market for computer memory, some researchers have even more ambitious plans for magnetic computing. In a paper published last month in Science, Russell Cowburn and Mark Well and of Cambridge University outlined research that could form the basis of a magnetic microprocessor — a chip capable of manipulating (rather than merely storing) information magnetically. In place of conducting wires, a magnetic processor would have rows of magnetic dots, each of which could be polarised in one of two directions. Individual bits of information would travel down the rows as magnetic pulses, changing the orientation of the dots as they went. Dr. Cowbum and Dr. Welland have demonstrated how a logic gate (the basic element of a microprocessor) could work in such a scheme. In their experiment, they fed a signal in at one end of the chain of dots and used a second signal to control whether it propagated along the chain.It is, admittedly, a long way from a single logic gate to a full microprocessor, but this was true also when the transistor was first invented. Dr. Cowburn, who is now searching for backers to help commercialise the technology, says he believes it will be at least ten years before the first magnetic microprocessor is constructed. But other researchers in the field agree that such a chip, is the next logical step. Dr. Prinz says that once magnetic memory is sorted out “the target is to go after the logic circuits.” Whether all-magnetic computers will ever be able to compete with other contenders that are jostling to knock electronics off its perch — such as optical, biological and quantum computing — remains to be seen. Dr. Cowburn suggests that the future lies with hybrid machines that use different technologies. But computing with magnetism evidently has an attraction all its own.In developing magnetic memory chips to replace the electronic ones, two alternative research paths are being pursued. These are approaches based on:
 ....
MCQ-> Read the passage carefully and answer the questions given at the end of each passage:Turning the business involved more than segmenting and pulling out of retail. It also meant maximizing every strength we had in order to boost our profit margins. In re-examining the direct model, we realized that inventory management was not just core strength; it could be an incredible opportunity for us, and one that had not yet been discovered by any of our competitors. In Version 1.0 the direct model, we eliminated the reseller, thereby eliminating the mark-up and the cost of maintaining a store. In Version 1.1, we went one step further to reduce inventory inefficiencies. Traditionally, a long chain of partners was involved in getting a product to the customer. Let’s say you have a factory building a PC we’ll call model #4000. The system is then sent to the distributor, which sends it to the warehouse, which sends it to the dealer, who eventually pushes it on to the consumer by advertising, “I’ve got model #4000. Come and buy it.” If the consumer says, “But I want model #8000,” the dealer replies, “Sorry, I only have model #4000.” Meanwhile, the factory keeps building model #4000s and pushing the inventory into the channel. The result is a glut of model #4000s that nobody wants. Inevitably, someone ends up with too much inventory, and you see big price corrections. The retailer can’t sell it at the suggested retail price, so the manufacturer loses money on price protection (a practice common in our industry of compensating dealers for reductions in suggested selling price). Companies with long, multi-step distribution systems will often fill their distribution channels with products in an attempt to clear out older targets. This dangerous and inefficient practice is called “channel stuffing”. Worst of all, the customer ends up paying for it by purchasing systems that are already out of date Because we were building directly to fill our customers’ orders, we didn’t have finished goods inventory devaluing on a daily basis. Because we aligned our suppliers to deliver components as we used them, we were able to minimize raw material inventory. Reductions in component costs could be passed on to our customers quickly, which made them happier and improved our competitive advantage. It also allowed us to deliver the latest technology to our customers faster than our competitors. The direct model turns conventional manufacturing inside out. Conventional manufacturing, because your plant can’t keep going. But if you don’t know what you need to build because of dramatic changes in demand, you run the risk of ending up with terrific amounts of excess and obsolete inventory. That is not the goal. The concept behind the direct model has nothing to do with stockpiling and everything to do with information. The quality of your information is inversely proportional to the amount of assets required, in this case excess inventory. With less information about customer needs, you need massive amounts of inventory. So, if you have great information – that is, you know exactly what people want and how much - you need that much less inventory. Less inventory, of course, corresponds to less inventory depreciation. In the computer industry, component prices are always falling as suppliers introduce faster chips, bigger disk drives and modems with ever-greater bandwidth. Let’s say that Dell has six days of inventory. Compare that to an indirect competitor who has twenty-five days of inventory with another thirty in their distribution channel. That’s a difference of forty-nine days, and in forty-nine days, the cost of materials will decline about 6 percent. Then there’s the threat of getting stuck with obsolete inventory if you’re caught in a transition to a next- generation product, as we were with those memory chip in 1989. As the product approaches the end of its life, the manufacturer has to worry about whether it has too much in the channel and whether a competitor will dump products, destroying profit margins for everyone. This is a perpetual problem in the computer industry, but with the direct model, we have virtually eliminated it. We know when our customers are ready to move on technologically, and we can get out of the market before its most precarious time. We don’t have to subsidize our losses by charging higher prices for other products. And ultimately, our customer wins. Optimal inventory management really starts with the design process. You want to design the product so that the entire product supply chain, as well as the manufacturing process, is oriented not just for speed but for what we call velocity. Speed means being fast in the first place. Velocity means squeezing time out of every step in the process. Inventory velocity has become a passion for us. To achieve maximum velocity, you have to design your products in a way that covers the largest part of the market with the fewest number of parts. For example, you don’t need nine different disk drives when you can serve 98 percent of the market with only four. We also learned to take into account the variability of the lost cost and high cost components. Systems were reconfigured to allow for a greater variety of low-cost parts and a limited variety of expensive parts. The goal was to decrease the number of components to manage, which increased the velocity, which decreased the risk of inventory depreciation, which increased the overall health of our business system. We were also able to reduce inventory well below the levels anyone thought possible by constantly challenging and surprising ourselves with the result. We had our internal skeptics when we first started pushing for ever-lower levels of inventory. I remember the head of our procurement group telling me that this was like “flying low to the ground 300 knots.” He was worried that we wouldn’t see the trees.In 1993, we had $2.9 billion in sales and $220 million in inventory. Four years later, we posted $12.3 billion in sales and had inventory of $33 million. We’re now down to six days of inventory and we’re starting to measure it in hours instead of days. Once you reduce your inventory while maintaining your growth rate, a significant amount of risk comes from the transition from one generation of product to the next. Without traditional stockpiles of inventory, it is critical to precisely time the discontinuance of the older product line with the ramp-up in customer demand for the newer one. Since we were introducing new products all the time, it became imperative to avoid the huge drag effect from mistakes made during transitions. E&O; – short for “excess and obsolete” - became taboo at Dell. We would debate about whether our E&O; was 30 or 50 cent per PC. Since anything less than $20 per PC is not bad, when you’re down in the cents range, you’re approaching stellar performance.Find out the TRUE statement:
 ....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions