1. The 2-kg shaft CA passes through a smooth journal bearing at B. Initially, the springs, which are coiled loosely around the shaft, are unstretched when no force is applied to the shaft. In this position s = sª = 250 and the shaft is originally at rest. If a horizontal force of F = 5 kN is applied, determine the speed of the shaft at the instant s = 50 mm, sª = 450 mm. The ends of the springs are attached to the bearing at B and the caps at C and A.





Write Comment

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->A sliding mesh gearbox has a gear ratio 4:1 at the third gear position. The clutch shaft gear has 15 teeth and its mating lay shaft gear is having 45 teeth. If the main shaft gear contains 28 teeth, the mating lay shaft gear should have:....
QA->A car during its journey travels 30 minutes at the speed of 40 km/hr. another 45 minutes at the speed of 60 km /hr and for two hours at a speed of 70 km/hr. Find the average speed of the car?....
QA->A 1 km long train passes through a tunnel of 1 km length at a speed of 1 km per minute. How much time will it take to pass through it completely?....
QA->India govt plan to construct new corridor for high speed train with speed range 300-350 kmph. What is the present maximum speed of long distance train in India?....
QA->Which transmission unit is used to turn the driven shaft faster than the driving shaft?....
MCQ->The 2-kg shaft CA passes through a smooth journal bearing at B. Initially, the springs, which are coiled loosely around the shaft, are unstretched when no force is applied to the shaft. In this position s = sª = 250 and the shaft is originally at rest. If a horizontal force of F = 5 kN is applied, determine the speed of the shaft at the instant s = 50 mm, sª = 450 mm. The ends of the springs are attached to the bearing at B and the caps at C and A.....
MCQ-> Cells are the ultimate multi-taskers: they can switch on genes and carry out their orders, talk to each other, divide in two, and much more, all at the same time. But they couldn’t do any of these tricks without a power source to generate movement. The inside of a cell bustles with more traffic than Delhi roads, and, like all vehicles, the cell’s moving parts need engines. Physicists and biologists have looked ‘under the hood’ of the cell and laid out the nuts and bolts of molecular engines.The ability of such engines to convert chemical energy into motion is the envy nanotechnology researchers looking for ways to power molecule-sized devices. Medical researchers also want to understand how these engines work. Because these molecules are essential for cell division, scientists hope to shut down the rampant growth of cancer cells by deactivating certain motors. Improving motor-driven transport in nerve cells may also be helpful for treating diseases such as Alzheimer’s, Parkinson’s or ALS, also known as Lou Gehrig’s disease.We wouldn’t make it far in life without motor proteins. Our muscles wouldn’t contract. We couldn’t grow, because the growth process requires cells to duplicate their machinery and pull the copies apart. And our genes would be silent without the services of messenger RNA, which carries genetic instructions over to the cell’s protein-making factories. The movements that make these cellular activities possible occur along a complex network of threadlike fibers, or polymers, along which bundles of molecules travel like trams. The engines that power the cell’s freight are three families of proteins, called myosin, kinesin and dynein. For fuel, these proteins burn molecules of ATP, which cells make when they break down the carbohydrates and fats from the foods we eat. The energy from burning ATP causes changes in the proteins’ shape that allow them to heave themselves along the polymer track. The results are impressive: In one second, these molecules can travel between 50 and 100 times their own diameter. If a car with a five-foot-wide engine were as efficient, it would travel 170 to 340 kilometres per hour.Ronald Vale, a researcher at the Howard Hughes Medical Institute and the University of California at San Francisco, and Ronald Milligan of the Scripps Research Institute have realized a long-awaited goal by reconstructing the process by which myosin and kinesin move, almost down to the atom. The dynein motor, on the other hand, is still poorly understood. Myosin molecules, best known for their role in muscle contraction, form chains that lie between filaments of another protein called actin. Each myosin molecule has a tiny head that pokes out from the chain like oars from a canoe. Just as rowers propel their boat by stroking their oars through the water, the myosin molecules stick their heads into the actin and hoist themselves forward along the filament. While myosin moves along in short strokes, its cousin kinesin walks steadily along a different type of filament called a microtubule. Instead of using a projecting head as a lever, kinesin walks on two ‘legs’. Based on these differences, researchers used to think that myosin and kinesin were virtually unrelated. But newly discovered similarities in the motors’ ATP-processing machinery now suggest that they share a common ancestor — molecule. At this point, scientists can only speculate as to what type of primitive cell-like structure this ancestor occupied as it learned to burn ATP and use the energy to change shape. “We’ll never really know, because we can’t dig up the remains of ancient proteins, but that was probably a big evolutionary leap,” says Vale.On a slightly larger scale, loner cells like sperm or infectious bacteria are prime movers that resolutely push their way through to other cells. As L. Mahadevan and Paul Matsudaira of the Massachusetts Institute of Technology explain, the engines in this case are springs or ratchets that are clusters of molecules, rather than single proteins like myosin and kinesin. Researchers don’t yet fully understand these engines’ fueling process or the details of how they move, but the result is a force to be reckoned with. For example, one such engine is a spring-like stalk connecting a single-celled organism called a vorticellid to the leaf fragment it calls home. When exposed to calcium, the spring contracts, yanking the vorticellid down at speeds approaching three inches (eight centimetres) per second.Springs like this are coiled bundles of filaments that expand or contract in response to chemical cues. A wave of positively charged calcium ions, for example, neutralizes the negative charges that keep the filaments extended. Some sperm use spring-like engines made of actin filaments to shoot out a barb that penetrates the layers that surround an egg. And certain viruses use a similar apparatus to shoot their DNA into the host’s cell. Ratchets are also useful for moving whole cells, including some other sperm and pathogens. These engines are filaments that simply grow at one end, attracting chemical building blocks from nearby. Because the other end is anchored in place, the growing end pushes against any barrier that gets in its way.Both springs and ratchets are made up of small units that each move just slightly, but collectively produce a powerful movement. Ultimately, Mahadevan and Matsudaira hope to better understand just how these particles create an effect that seems to be so much more than the sum of its parts. Might such an understanding provide inspiration for ways to power artificial nano-sized devices in the future? “The short answer is absolutely,” says Mahadevan. “Biology has had a lot more time to evolve enormous richness in design for different organisms. Hopefully, studying these structures will not only improve our understanding of the biological world, it will also enable us to copy them, take apart their components and recreate them for other purpose.”According to the author, research on the power source of movement in cells can contribute to
 ....
MCQ-> My aim is to present a conception of justice which generalizes and carries to a higher level of abstraction the familiar theory of the social contract. In order to do this we are not to think of the original contract as one to enter a particular society or to set up a particular form of government. Rather, the idea is that the principles of justice for the basic structure of society are the object of the original agreement. They are the principles that free and rational persons concerned to further their own interests would accept in an initial position of equality. These principles are to regulate all further agreements; they specify the kinds of social cooperation that can be entered into and the forms of government that can be established. This way of regarding the principles of justice, I shall call justice as fairness. Thus, we are to imagine that those who engage in social cooperation choose together, in one joint act, the principles which are to assign basic rights and duties and to determine the division of social benefits. Just as each person must decide by rational reflection what constitutes his good, that is, the system of ends which it is rational for him to pursue, so a group of persons must decide once and for all what is to count among them as just and unjust. The choice which rational men would make in this hypothetical situation of equal liberty determines the principles of justice.In ‘justice as fairness’, the original position is not an actual historical state of affairs. It is understood as a purely hypothetical situation characterized so as to lead to a certain conception of justice. Among the essential features of this situation is that no one knows his place in society, his class position or social status, nor does anyone know his fortune in the distribution of natural assets and abilities, his intelligence, strength, and the like. I shall even assume that the parties do not know their conceptions of the good or their special psychological propensities. The principles of justice are chosen behind a veil of ignorance. This ensures that no one is advantaged or disadvantaged in the choice of principles by the outcome of natural chance or the contingency of social circumstances. Since all are similarly situated and no one is able to design principles to favor his particular condition, the principles of justice are the result of a fair agreement or bargain.Justice as fairness begins with one of the most general of all choices which persons might make together, namely, with the choice of the first principles of a conception of justice which is to regulate all subsequent criticism and reform of institutions. Then, having chosen a conception of justice, we can suppose that they are to choose a constitution and a legislature to enact laws, and so on, all in accordance with the principles of justice initially agreed upon. Our social situation is just if it is such that by this sequence of hypothetical agreements we would have contracted into the general system of rules which defines it. Moreover, assuming that the original position does determine a set of principles, it will then be true that whenever social institutions satisfy these principles, those engaged in them can say to one another that they are cooperating on terms to which they would agree if they were free and equal persons whose relations with respect to one another were fair. They could all view their arrangements as meeting the stipulations which they would acknowledge in an initial situation that embodies widely accepted and reasonable constraints on the choice of principles. The general recognition of this fact would provide the basis for a public acceptance of the corresponding principles of justice. No society can, of course, be a scheme of cooperation which men enter voluntarily in a literal sense; each person finds himself placed at birth in some particular position in some particular society, and the nature of this position materially affects his life prospects. Yet a society satisfying the principles of justice as fairness comes as close as a society can to being a voluntary scheme, for it meets the principles which free and equal persons would assent to under circumstances that are fair.A just society, as conceptualized in the passage, can be best described as:
 ....
MCQ->You are given a question and two statements. Identify which of the statements is/are sufficient to answer the question. Question: Nayan has 4 caps of 3 different colours. How many blue caps does he have? Statements: 1. Nayan has 2 white caps. 2. The number of blue caps he has is the same as that of beige caps.....
MCQ->A girl having a weight of 40 lb slides down the smooth slide onto the surface of a 20-lb wagon. Determine the speed of the wagon at the instant the girl stops sliding on it. If someone ties the wagon to the slide at B, determine the horizontal impulse the girl will exert at C in order to stop her motion. Neglect friction and assume that the girl starts from rest at the top of the slide, A.....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions