1. The different access methods which permit many satellite users to operate in parallel through a single transponder without interfering with each other as





Write Comment

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->The code name given to the electronic surveillance programme operated by US which is said to have direct access to the communication passed through Google, Facebook, Apple and many other internet companies?....
QA->There are 50 students in a class. In a class test 22 students get 25 marks each, 18 students get 30 marks each. Each of the remaining gets 16 marks. The average mark of the whole class is :....
QA->Through how many methods a person can attain Indian Citizenship?....
QA->Living together of a man and woman without being married to each other....
QA->Through which methods is the national income of India estimated mainly?....
MCQ->The different access methods which permit many satellite users to operate in parallel through a single transponder without interfering with each other as....
MCQ-> Please read the three reports (newspaper articles) on ranking of different players and products in smart phones industry and answer the questions that follow. Report 1: (Feb, 2013) Apple nabs crown as current top US mobile phone vendor Apple’s reign may not be long, as Samsung is poised to overtake Apple in April, 2013. For the first time since Apple entered the mobile phone market in 2007, it has been ranked the top mobile phone vendor in the US. For the latter quarter of 2012, sales of its iPhone accounted for 34 percent of all mobile phone sales in the US - including feature phones - according to the latest data from Strategy Analytics. While the iPhone has consistently been ranked the top smartphone sold in the US, market research firm NPD noted that feature phone sales have fallen off a cliff recently, to the point where 8 out of every 10 mobile phones sold in the US are now smartphones. That ratio is up considerably from the end of 2011, when smartphones had just cracked the 50 percent mark. Given this fact it’s no surprise that Apple, which only sells smartphones, has been able to reach the top of the overall mobile phone market domestically. For the fourth quarter of 2012, Apple ranked number one with 34 percent of the US mobile market, up from 25.6 percent year over year. Samsung grew similarly, up to 32.3 percent from 26.9 percent - but not enough to keep from slipping to second place. LG dropped to 9 percent from 13.7 percent, holding its third place spot. It should be noted that Samsung and LG both sell a variety of feature phones in addition to smartphones. Looking only at smartphones, the ranking is a little different according to NPD. Apple holds the top spot with 39 percent of the US smartphone market, while Samsung again sits at number two with 30 percent. Motorola manages to rank third with 7 percent, while HTC dropped to fourth with 6 percent. In the US smartphone market, LG is fifth with 6 percent. Note how the percentages aren’t all that different from overall mobile phone market share - for all intents and purposes, the smartphone market is the mobile phone market in the US going forward. Still, Samsung was the top mobile phone vendor overall for 2012, and Strategy Analytics expects Samsung to be back on top soon. “Samsung had been the number one mobile phone vendor in the US since 2008, and it will surely be keen to recapture that title in 2013 by launching improved new models such as the rumored Galaxy S4”. And while Apple is the top vendor overall among smartphones, its iOS platform is still second to the Android platform overall. Samsung is the largest vendor selling Android-based smartphones, but Motorola, HTC, LG, and others also sell Android devices, giving the platform a clear advantage over iOS both domestically and globally. Report 2: Reader’s Response (2013, Feb) I don’t actually believe the numbers for Samsung. Ever since the debacle in early 2011, when Lenovo called into question the numbers Samsung was touting for tablet shipments, stating that Samsung had only sold 20,000 of the 1.5 million tablets they shipped into the US the last quarter of 2010, Samsung (who had no response to Lenovo) has refused to supply quarterly sales numbers for smartphones or tablets. That’s an indication that their sales aren’t what analysts are saying. We can look to several things to help understand why. In the lawsuit between Apple and Samsung here last year, both were required to supply real sales numbers for devices under contention. The phones listed turned out to have sales between one third and one half of what had been guessed by IDC and others. Tablet sales were even worse. Of the 1.5 million tablets supposedly shipped to the US during that time, only 38,000 were sold. Then we have the usage numbers. Samsung tablets have only a 1.5% usage rate, where the iPad has over 90%. Not as much a difference with the phones but it’s still overwhelmingly in favor of iPhone. The problem is that with Apple’s sales, we have actual numbers to go by. The companies who estimate can calibrate what they do after those numbers come out. But with Samsung and many others, they can’t ever calibrate their methods, as there are no confirming numbers released from the firms. A few quarters ago, as a result, we saw iSupply estimate Samsung’s smartphone sales for the quarter at 32 million, with estimates from others all over the place up to 50 million. Each time some other company reported a higher number for that same quarter, the press dutifully used that higher number as THE ONE. But none of them was the one. Without accurate self-reporting of actual sales to the end users, none of these market share charts are worth a damn! Report 3: Contradictory survey (Feb, 2013) iPhone5 Ranks Fifth In U.S. Customer Satisfaction Survey inShare. The iPhone5 ranks fifth in customer satisfaction according to the results of a recent survey from OnDevice Research, a mobile device research group. In the poll, they asked 320,000 smartphone and tablet users from six different countries, how satisfied they were with their devices. According to 93,825 people from the US, Motorola Atrix HD is the most satisfying and Motorola’s Droid Razr took second spot. HTC Corp (TPE : 2498)’s Rezound 4G and Samsung Galaxy Note 2 took third and fourth spots, while Apple’s iPhone5 landed in fifth spot. It appears that Apple may be lagging in consumer interest. OnDevice Research, Sarah Quinn explained, “Although Apple created one of the most revolutionary devices of the past decade, other manufactures have caught up, with some Android powered devices now commanding higher levels of user satisfaction.” Despite the lower rankings, things aren’t looking too bad for Apple Inc. (NASDAQ:AAPL) elsewhere. In the United Kingdom, they ranked second place, right after HTC One X. Interesting enough, Apple did take top spot for overall satisfaction of mobile device, whereas Google Inc. (NASDAQ:GOOG) ranked second. Motorola Mobility Holdings Inc. (NYSE:NOK) took third, fourth, and fifth places respectively, while Sony Ericsson trailed behind at sixth place. The survey sampled mobile device users in the following countries: United States, United Kingdom, France, Germany, Japan, and Indonesia. Although OnDevice didn’t share the full list of devices mentioned in the survey, it does show some insight to what customers want. Unfortunately, there were still many questions regarding the survey that were left unanswered. Everyone wants to know why Google Inc. (NASDAQ:GOOG) was on the list when they are not an actual smartphone maker and why was Samsung Electronics Co., Ltd. (LON:BC94) on the bottom of the satisfaction list when the brand is leading elsewhere. Source: 92.825 US mobile users, July 2012 - January 2013 Fortunately, those questions were answered by OnDevice Research’s representative. He explained that the survey was conducted on mobile web where the survey software could detect the taker’s device and since user’s rate their satisfaction levels on a 1 to 10 scale, thanks to the Nexus device, Google was included.If you analyze the three reports above, which of the following statements would be the best inference?
 ....
MCQ-> Questions are based on a set of conditions. In answering some of the questions, it may be useful to draw a rough diagram. Choose the response that most accurately and completely answers each question. A BPO has assigned duty to nine operators - Abdulla, Ballal, Chandan, Dogra, Eshita, Falguni, Ganguli, Henri and Indra - on Monday, January 05, 2009 from 00:00 hours. Each operator commences duty at any of the following hours: 00:00 hrs, 04:00 hrs, 08:00 hrs, 12:00 hrs, 16:00 hrs and 20:00 hrs. At any point in time, at least one operator is required, to take clients' calls. Each operator works continuously for eight hours. All operators located at any single location start work simultaneously. The operators took training in five different colleges -Abhiman College, Sutanama College, Gutakal College, Barala College and Khatanama College. These colleges are located in the cities Jamshedpur, Pune, Noida, Hyderabad and Mangalore, not necessarily in that order. The operators operate from the cities where their respective colleges are located. Indra operates alone from a city other than Mangalore and Jamshedpur. Operator(s) trained in Abhiman College will start working at 12:00 hrs. Only Dogra and Falguni operate from Pune, but they are not trained in Gutakal College. Three of the operators took training from Sutanama College, and they operate from Noida. The operator(s) from Jamshedpur will start working at 0:00 hrs. Abdulla and Henri operate together as a two member team from a single location. They do not operate from Mangalore. No operator(s) will join at 20:00 hrs. Ballal, who alone operates from his location, was not trained in Barala College, and will commence his duty four hours after the operator(s) trained in Gutakal College. The operator(s) trained in Barala College operate from Hyderabad. The number of operator(s) trained in Khatanama College is same as the number of operator(s) trained in Barala College.Which of the following statements must be true?
 ....
MCQ-> Cells are the ultimate multi-taskers: they can switch on genes and carry out their orders, talk to each other, divide in two, and much more, all at the same time. But they couldn’t do any of these tricks without a power source to generate movement. The inside of a cell bustles with more traffic than Delhi roads, and, like all vehicles, the cell’s moving parts need engines. Physicists and biologists have looked ‘under the hood’ of the cell and laid out the nuts and bolts of molecular engines.The ability of such engines to convert chemical energy into motion is the envy nanotechnology researchers looking for ways to power molecule-sized devices. Medical researchers also want to understand how these engines work. Because these molecules are essential for cell division, scientists hope to shut down the rampant growth of cancer cells by deactivating certain motors. Improving motor-driven transport in nerve cells may also be helpful for treating diseases such as Alzheimer’s, Parkinson’s or ALS, also known as Lou Gehrig’s disease.We wouldn’t make it far in life without motor proteins. Our muscles wouldn’t contract. We couldn’t grow, because the growth process requires cells to duplicate their machinery and pull the copies apart. And our genes would be silent without the services of messenger RNA, which carries genetic instructions over to the cell’s protein-making factories. The movements that make these cellular activities possible occur along a complex network of threadlike fibers, or polymers, along which bundles of molecules travel like trams. The engines that power the cell’s freight are three families of proteins, called myosin, kinesin and dynein. For fuel, these proteins burn molecules of ATP, which cells make when they break down the carbohydrates and fats from the foods we eat. The energy from burning ATP causes changes in the proteins’ shape that allow them to heave themselves along the polymer track. The results are impressive: In one second, these molecules can travel between 50 and 100 times their own diameter. If a car with a five-foot-wide engine were as efficient, it would travel 170 to 340 kilometres per hour.Ronald Vale, a researcher at the Howard Hughes Medical Institute and the University of California at San Francisco, and Ronald Milligan of the Scripps Research Institute have realized a long-awaited goal by reconstructing the process by which myosin and kinesin move, almost down to the atom. The dynein motor, on the other hand, is still poorly understood. Myosin molecules, best known for their role in muscle contraction, form chains that lie between filaments of another protein called actin. Each myosin molecule has a tiny head that pokes out from the chain like oars from a canoe. Just as rowers propel their boat by stroking their oars through the water, the myosin molecules stick their heads into the actin and hoist themselves forward along the filament. While myosin moves along in short strokes, its cousin kinesin walks steadily along a different type of filament called a microtubule. Instead of using a projecting head as a lever, kinesin walks on two ‘legs’. Based on these differences, researchers used to think that myosin and kinesin were virtually unrelated. But newly discovered similarities in the motors’ ATP-processing machinery now suggest that they share a common ancestor — molecule. At this point, scientists can only speculate as to what type of primitive cell-like structure this ancestor occupied as it learned to burn ATP and use the energy to change shape. “We’ll never really know, because we can’t dig up the remains of ancient proteins, but that was probably a big evolutionary leap,” says Vale.On a slightly larger scale, loner cells like sperm or infectious bacteria are prime movers that resolutely push their way through to other cells. As L. Mahadevan and Paul Matsudaira of the Massachusetts Institute of Technology explain, the engines in this case are springs or ratchets that are clusters of molecules, rather than single proteins like myosin and kinesin. Researchers don’t yet fully understand these engines’ fueling process or the details of how they move, but the result is a force to be reckoned with. For example, one such engine is a spring-like stalk connecting a single-celled organism called a vorticellid to the leaf fragment it calls home. When exposed to calcium, the spring contracts, yanking the vorticellid down at speeds approaching three inches (eight centimetres) per second.Springs like this are coiled bundles of filaments that expand or contract in response to chemical cues. A wave of positively charged calcium ions, for example, neutralizes the negative charges that keep the filaments extended. Some sperm use spring-like engines made of actin filaments to shoot out a barb that penetrates the layers that surround an egg. And certain viruses use a similar apparatus to shoot their DNA into the host’s cell. Ratchets are also useful for moving whole cells, including some other sperm and pathogens. These engines are filaments that simply grow at one end, attracting chemical building blocks from nearby. Because the other end is anchored in place, the growing end pushes against any barrier that gets in its way.Both springs and ratchets are made up of small units that each move just slightly, but collectively produce a powerful movement. Ultimately, Mahadevan and Matsudaira hope to better understand just how these particles create an effect that seems to be so much more than the sum of its parts. Might such an understanding provide inspiration for ways to power artificial nano-sized devices in the future? “The short answer is absolutely,” says Mahadevan. “Biology has had a lot more time to evolve enormous richness in design for different organisms. Hopefully, studying these structures will not only improve our understanding of the biological world, it will also enable us to copy them, take apart their components and recreate them for other purpose.”According to the author, research on the power source of movement in cells can contribute to
 ....
MCQ-> Read the following passage carefully and answer the given questions. Certain words/phrases have been given in bold to help you locate them while answering some of the questions. Virtual currencies are growing in popularity. While the collective value of virtual currencies is still a fraction of the total U.S. Dollars in circulation, the use of virtual currencies as a payment mechanism of transfer of value is gaining momentum. Additionally, the number of entities (issuers, exchangers and intermediaries, to name just a few) that engage in virtual currency transactions is increasing and these entities often need access to traditional banking services.Virtual currencies are digital representations of value that function as a medium of exchange, a unit of account and a store of value (buy now redeem later policy). In many cases, virtual currencies are “convertible” currencies; they are not legal lenders, but they have an equivalent value in real currency. Despite what seems to be a tremendous interest in virtual currencies their overall value is still extremely small relative to other payment mechanisms, such as cash, cheques and credit and debit cards. The virtual currency landscape includes many participants from the merchant that accepts the virtual currency, to the intermediary that exchanges the virtual currency on behalf of the merchant, to the exchange that actually converts the virtual currency to the real currency to the electronic wallet provider that holds the virtual currency on behalf of its owner. Accordingly, opportunities abound for community banks to provide services to entities engaged in virtual currency activities. Eventually, it is also possible that community banks may find themselves holding virtual currency on their own balance sheets.Launched in 2009, Silicon is currently the largest and most popular virtual currency. However, many other virtual currencies have emerged over the past few years, such as Litecoin, Dogecoin, Peercoin and these provide even more anonymity to its users than that provided by Bitcoin.As the virtual currency landscape is fraught with dangers, what important risks should community bankers consider?The most significant is compliance risk- a subset of legal risk. Specifically, virtual currency administrators or legal exchangers may present risks similar to other money transmitters, as well in presenting their own unique risks. Quite simply, many users of virtual currencies do so because of the perceptions that transactions conaucted using virtual currencies are anonymous. The less-than transparent nature of the transactions, :nay make it more difficult for a inancial institution to truly know and understand the activities of its customer and whether the customer’s activities are legal. Therefore, these transactions may present a higher risk for banks and require additional due diligence and monitoring.Another important risk for community banks to consider is credit risk. How should a community bank respond if a borrower wants to specifically post Bitcoin or another virtual currency as collateral for a loan? For many, virtual currencies are simply another form of cash, so it is not hard to analyse that bankers will face such a scenario at some point. In this case, caution is appropriate. Bankers should carefully weigh the pros and cons of extending any loan secured by Bitcoin or other virtual currencies (in whole or in part), or where the source of loan repayment is in some way dependent on the virtual currency. For one, the value of Bitcoin in particular has been volatile. Then, the collateral value could fluctuate widely from day-to-day. Bankers also need to think about control over the account. ‘How does the banker control access to a virtual wallet, and how can it control the borrower’s access to the virtual wallet? In the event of a loan default, the bank would need to take control of the virtual currency. This would require access to the borrower’s virtual wallet and private key. All of this suggests that the loan agreement needs to be carefully crafted and that additional steps need to be taken to ensure the bank has a perfected lift on the virtual currency.Virtual currencies bring with them, both opportunities and challenges, and they are likely here to stay. Although, it is too early to determine just how prevalent they will be in the coming years, we too expect that the virtual participants in the virtual currency ecosystem will increasingly intersect with the banking industry.Which of the following is the meaning of the phrase ‘fraught with dangers’ as mentioned in the passage?
 ....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions