1. In a linear circuit, the superposition principle can be applied to calculate the





Write Comment

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->At the time of short-circuit; what will be the current in the circuit?....
QA->At the time of short-circuit, what will be the current in the circuit?....
QA->What can be considered as basic building blocks of a digital circuit?....
QA->Who did the first scientific attempt to calculate the national income of India in 1931-32?....
QA->The linear formula for I/O seek time, with n tracks and startup time s, where m is a constant depends on disk drive:....
MCQ->In a linear circuit, the superposition principle can be applied to calculate the....
MCQ-> Modern science, exclusive of geometry, is a comparatively recent creation and can be said to have originated with Galileo and Newton. Galileo was the first scientist to recognize clearly that the only way to further our understanding of the physical world was to resort to experiment. However obvious Galileo’s contention may appear in the light of our present knowledge, it remains a fact that the Greeks, in spite of their proficiency in geometry, never seem to have realized the importance of experiment. To a certain extent this may be attributed to the crudeness of their instruments of measurement. Still an excuse of this sort can scarcely be put forward when the elementary nature of Galileo’s experiments and observations is recalled. Watching a lamp oscillate in the cathedral of Pisa, dropping bodies from the leaning tower of Pisa, rolling balls down inclined planes, noticing the magnifying effect of water in a spherical glass vase, such was the nature of Galileo’s experiments and observations. As can be seen, they might just as well have been performed by the Greeks. At any rate, it was thanks to such experiments that Galileo discovered the fundamental law of dynamics, according to which the acceleration imparted to a body is proportional to the force acting upon it.The next advance was due to Newton, the greatest scientist of all time if account be taken of his joint contributions to mathematics and physics. As a physicist, he was of course an ardent adherent of the empirical method, but his greatest title to fame lies in another direction. Prior to Newton, mathematics, chiefly in the form of geometry, had been studied as a fine art without any view to its physical applications other than in very trivial cases. But with Newton all the resources of mathematics were turned to advantage in the solution of physical problems. Thenceforth mathematics appeared as an instrument of discovery, the most powerful one known to man, multiplying the power of thought just as in the mechanical domain the lever multiplied our physical action. It is this application of mathematics to the solution of physical problems, this combination of two separate fields of investigation, which constitutes the essential characteristic of the Newtonian method. Thus problems of physics were metamorphosed into problems of mathematics.But in Newton’s day the mathematical instrument was still in a very backward state of development. In this field again Newton showed the mark of genius by inventing the integral calculus. As a result of this remarkable discovery, problems, which would have baffled Archimedes, were solved with ease. We know that in Newton’s hands this new departure in scientific method led to the discovery of the law of gravitation. But here again the real significance of Newton’s achievement lay not so much in the exact quantitative formulation of the law of attraction, as in his having established the presence of law and order at least in one important realm of nature, namely, in the motions of heavenly bodies. Nature thus exhibited rationality and was not mere blind chaos and uncertainty. To be sure, Newton’s investigations had been concerned with but a small group of natural phenomena, but it appeared unlikely that this mathematical law and order should turn out to be restricted to certain special phenomena; and the feeling was general that all the physical processes of nature would prove to be unfolding themselves according to rigorous mathematical laws.When Einstein, in 1905, published his celebrated paper on the electrodynamics of moving bodies, he remarked that the difficulties, which surrouned the equations of electrodynamics, together with the negative experiments of Michelson and others, would be obviated if we extended the validity of the Newtonian principle of the relativity of Galilean motion, which applies solely to mechanical phenomena, so as to include all manner of phenomena: electrodynamics, optical etc. When extended in this way the Newtonian principle of relativity became Einstein’s special principle of relativity. Its significance lay in its assertion that absolute Galilean motion or absolute velocity must ever escape all experimental detection. Henceforth absolute velocity should be conceived of as physically meaningless, not only in the particular ream of mechanics, as in Newton’s day, but in the entire realm of physical phenomena. Einstein’s special principle, by adding increased emphasis to this relativity of velocity, making absolute velocity metaphysically meaningless, created a still more profound distinction between velocity and accelerated or rotational motion. This latter type of motion remained absolute and real as before. It is most important to understand this point and to realize that Einstein’s special principle is merely an extension of the validity of the classical Newtonian principle to all classes of phenomena.According to the author, why did the Greeks NOT conduct experiments to understand the physical world?
 ....
MCQ->Assertion (A): Superposition theorem can be used to find the output of a full wave rectifier excited by sinusoidal signal sources of different frequencies connected in series.Reason (R): Superposition theorem is valid for all linear systems.

....
MCQ->Assertion (A): A complicated waveform can be replaced by sum or difference of two or more waveforms.Reason (R): The method of superposition is applicable only to linear systems.

....
MCQ-> Read the passage and answer the questions that follow: Passage II Humans are pretty inventive creatures. That might be cause for optimism about the future of global change. We've found solutions to lots of problems in the past. And with a much larger and better-educated population than the world has ever seen — the supply of good ideas can only increase. So innovation will figure out a way to sustainable futures. But what is innovation? The media and companies routinely equate innovation with shiny new gadgets. In the same spirit, politicians charged with managing economies frequently talk as if all innovation is good. The history of almost any technology, however — from farming to applied nuclear physics — reveals a mixture of good and bad. The study of the concept of innovation, and of whether it can be steered, is a relatively recent academic effort. There are three ways that scholars have thought about innovation. The first was basically linear: science begets invention that begets innovation. Physics, for instance, gives us lasers, which give us —eventually — compact discs. Result: Growth! Prosperity! Rising living standards for all! From this perspective, it's assumed that science is the basis for long-term growth, and that innovation largely involves commercialisation of scientific discoveries. There is a role for the state, but only in funding the research. The rest can be left to the private sector. By the 1970s, economists interested in technology and some policy-makers were talking about something more complicated: national systems of innovation competing with each other. Such "systems" included measures to promote transfer of technology out of the lab, especially by building links between centres of discovery and technologists and entrepreneurs. The key failing of these two approaches is that they treat less desirable outcomes of innovation as externalities and are blind to the possibility that they may call for radically different technological priorities. The environmental effects of energy and materials-intensive industries may turn, out to be more destructive than we can handle. Radical system change is a third way to think about innovation. Technological trajectories aren't pre-ordained: Some paths arc chosen at the expense of others. And that's harder because it needs more than incremental change. The near future is about transformation. The more complex historical and social understanding of innovation now emerging leads to a richer concept of infrastructure, as part of a system with social and technical elements interwoven.An emphasis on the new, the experimental, the innovative - and on promoting social and technical solutions to global problems must overcome the sheer inertia of the systems we have already built - and are often still extending. Aiming for transformation leads to another take on creative destruction. It isn't enough to promote innovation as creation, the existing system has to be destabilized as well. System shifts of the radical kind envisaged will call for creation of a new infrastructure. But that won't do the job unless the old systems are deliberately removed on roughly the same time-scale. Achieving that will call for a lot more thought about how to if not destroy the old systems, at least set about dismantling them. From the passage we can conclude that the author believes
 ....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions