1. In a rare gas, the molecules of some atoms have an excess positive or negative charge. The electric field tends to shift positive ions relative to negative ions. This is known as ionic polarization.



Write Comment

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->Who said "The desire of power in excess caused the angels to fall; the desire of knowledge in excess caused man to fall"?....
QA->A soap bubble is given negative charge then what happen in its radius?....
QA->What are the atoms of the elements which have same number of neutrons called?....
QA->What work is work done in moving a positive charge on an equipotential surface?....
QA->Instrument used to store the electric charge is known by which name?....
MCQ->In a rare gas, the molecules of some atoms have an excess positive or negative charge. The electric field tends to shift positive ions relative to negative ions. This is known as ionic polarization.....
MCQ-> Cells are the ultimate multi-taskers: they can switch on genes and carry out their orders, talk to each other, divide in two, and much more, all at the same time. But they couldn’t do any of these tricks without a power source to generate movement. The inside of a cell bustles with more traffic than Delhi roads, and, like all vehicles, the cell’s moving parts need engines. Physicists and biologists have looked ‘under the hood’ of the cell and laid out the nuts and bolts of molecular engines.The ability of such engines to convert chemical energy into motion is the envy nanotechnology researchers looking for ways to power molecule-sized devices. Medical researchers also want to understand how these engines work. Because these molecules are essential for cell division, scientists hope to shut down the rampant growth of cancer cells by deactivating certain motors. Improving motor-driven transport in nerve cells may also be helpful for treating diseases such as Alzheimer’s, Parkinson’s or ALS, also known as Lou Gehrig’s disease.We wouldn’t make it far in life without motor proteins. Our muscles wouldn’t contract. We couldn’t grow, because the growth process requires cells to duplicate their machinery and pull the copies apart. And our genes would be silent without the services of messenger RNA, which carries genetic instructions over to the cell’s protein-making factories. The movements that make these cellular activities possible occur along a complex network of threadlike fibers, or polymers, along which bundles of molecules travel like trams. The engines that power the cell’s freight are three families of proteins, called myosin, kinesin and dynein. For fuel, these proteins burn molecules of ATP, which cells make when they break down the carbohydrates and fats from the foods we eat. The energy from burning ATP causes changes in the proteins’ shape that allow them to heave themselves along the polymer track. The results are impressive: In one second, these molecules can travel between 50 and 100 times their own diameter. If a car with a five-foot-wide engine were as efficient, it would travel 170 to 340 kilometres per hour.Ronald Vale, a researcher at the Howard Hughes Medical Institute and the University of California at San Francisco, and Ronald Milligan of the Scripps Research Institute have realized a long-awaited goal by reconstructing the process by which myosin and kinesin move, almost down to the atom. The dynein motor, on the other hand, is still poorly understood. Myosin molecules, best known for their role in muscle contraction, form chains that lie between filaments of another protein called actin. Each myosin molecule has a tiny head that pokes out from the chain like oars from a canoe. Just as rowers propel their boat by stroking their oars through the water, the myosin molecules stick their heads into the actin and hoist themselves forward along the filament. While myosin moves along in short strokes, its cousin kinesin walks steadily along a different type of filament called a microtubule. Instead of using a projecting head as a lever, kinesin walks on two ‘legs’. Based on these differences, researchers used to think that myosin and kinesin were virtually unrelated. But newly discovered similarities in the motors’ ATP-processing machinery now suggest that they share a common ancestor — molecule. At this point, scientists can only speculate as to what type of primitive cell-like structure this ancestor occupied as it learned to burn ATP and use the energy to change shape. “We’ll never really know, because we can’t dig up the remains of ancient proteins, but that was probably a big evolutionary leap,” says Vale.On a slightly larger scale, loner cells like sperm or infectious bacteria are prime movers that resolutely push their way through to other cells. As L. Mahadevan and Paul Matsudaira of the Massachusetts Institute of Technology explain, the engines in this case are springs or ratchets that are clusters of molecules, rather than single proteins like myosin and kinesin. Researchers don’t yet fully understand these engines’ fueling process or the details of how they move, but the result is a force to be reckoned with. For example, one such engine is a spring-like stalk connecting a single-celled organism called a vorticellid to the leaf fragment it calls home. When exposed to calcium, the spring contracts, yanking the vorticellid down at speeds approaching three inches (eight centimetres) per second.Springs like this are coiled bundles of filaments that expand or contract in response to chemical cues. A wave of positively charged calcium ions, for example, neutralizes the negative charges that keep the filaments extended. Some sperm use spring-like engines made of actin filaments to shoot out a barb that penetrates the layers that surround an egg. And certain viruses use a similar apparatus to shoot their DNA into the host’s cell. Ratchets are also useful for moving whole cells, including some other sperm and pathogens. These engines are filaments that simply grow at one end, attracting chemical building blocks from nearby. Because the other end is anchored in place, the growing end pushes against any barrier that gets in its way.Both springs and ratchets are made up of small units that each move just slightly, but collectively produce a powerful movement. Ultimately, Mahadevan and Matsudaira hope to better understand just how these particles create an effect that seems to be so much more than the sum of its parts. Might such an understanding provide inspiration for ways to power artificial nano-sized devices in the future? “The short answer is absolutely,” says Mahadevan. “Biology has had a lot more time to evolve enormous richness in design for different organisms. Hopefully, studying these structures will not only improve our understanding of the biological world, it will also enable us to copy them, take apart their components and recreate them for other purpose.”According to the author, research on the power source of movement in cells can contribute to
 ....
MCQ-> Read the following passage carefully and answer the questions given at the end. When Ratan Tata moved the Supreme Court, claiming his right to privacy had been violated, he called Harish Salve. The choice was not surprising. The former solicitor general had been topping the legal charts ever since he scripted a surprising win for Mukesh Ambani against his brother Anil. That dispute set the gold standard for legal fees. On Mukesh’s side were Salve, Rohinton Nariman, and Abhishek Manu Singhvi. The younger brother had an equally formidable line-up led by Ram Jethmalani and Mukul Rohatgi.The dispute dated back three-and-a-half years to when Anil filed case against his brother for reneging on an agreement to supply 28 million cubic metres of gas per day from its Krishna-Godavari basin fields at a rate of $ 2.34 for 17 years. The average legal fee was Rs. 25 lakh for a full day's appearance, not to mention the overnight stays at Mumbai's five-star suites, business class travel, and on occasion, use of the private jet. Little wonder though that Salve agreed to take on Tata’s case pro bono. He could afford philanthropy with one of India’s wealthiest tycoons.The lawyers’ fees alone, at a conservative estimate, must have cost the Ambanis at least Rs. 15 crore each. Both the brothers had booked their legal teams in the same hotel, first the Oberoi and, after the 26/ ll Mumbai attacks, the Trident. lt’s not the essentials as much as the frills that raise eyebrows. The veteran Jethmalani is surprisingly the most modest in his fees since he does not charge rates according to the strength of the client's purse. But as the crises have multiplied, lawyers‘fees have exploded.The 50 court hearings in the Haldia Petrochemicals vs. the West Bengal Government cost the former a total of Rs. 25 crore in lawyer fees and the 20 hearings in the Bombay Mill Case, which dragged on for three years, cost the mill owners almost Rs. 10 crore. Large corporate firms, which engage star counsels on behalf of the client, also need to know their quirks. For instance, Salve will only accept the first brief. He will never be the second counsel in a case. Some lawyers prefer to be paid partly in cash but the best are content with cheques. Some expect the client not to blink while picking up a dinner tab of Rs. 1.75 lakh at a Chennai five star. A lawyer is known to carry his home linen and curtains with him while travelling on work. A firm may even have to pick up a hot Vertu phone of the moment or a Jaeger-LeCoutre watch of the hour to keep a lawyer in good humour.Some are even paid to not appear at all for the other side - Aryama Sundaram was retained by Anil Ambani in the gas feud but he did not fight the case. Or take Raytheon when it was fighting the Jindals. Raytheon had paid seven top lawyers a retainer fee of Rs. 2.5 lakh each just to ensure that the Jindals would not be able to make a proper case on a taxation issue. They miscalculated when a star lawyer fought the case at the last minute. “I don’t take negative retainers”, shrugs Rohatgi, former additional solicitor general. “A Lawyer’s job is to appear for any client that comes to him. lt’s not for the lawyers to judge if a client is good or bad but the court”. Indeed. He is, after all, the lawyer who argued so famously in court that B. Ramalinga Raju did not ‘fudge any account in the Satyam Case. All he did was “window dressing”.Some high profile cases have continued for years, providing a steady source of income, from the Scindia succession battle which dates to 1989, to the JetLite Sahara battle now in taxation arbitration to the BCCI which is currently in litigation with Lalit Modi, Rajasthan Royals and Kings XI Punjab.Think of the large law firms as the big Hollywood studios and the senior counsel as the superstar. There are a few familiar faces to be found in most of the big ticket cases, whether it is the Ambani gas case, Vodafone taxation or Bombay Mills case. Explains Salve, “There is a reason why we have more than one senior advocate on a case. When you're arguing, he’s reading the court. He picks up a point or a vibe that you may have missed.” Says Rajan Karanjawala, whose firm has prepared the briefs for cases ranging from the Tata's recent right to privacy case to Karisma Kapoor’s divorce, “The four jewels in the crown today are Salve, Rohatgi, Rohinton Nariman and Singhvi. They have replaced the old guard of Fali Nariman, Soli Sorabjee, Ashok Desai and K.K. Venugopal.” He adds, “The one person who defies the generational gap is Jethmalani who was India's leading criminal lawyer in the 1960s and is so today.”The demand for superstar lawyers has far outstripped the supply. So a one-man show by, say, Rohatgi can run up billings of Rs. 40 crore, the same as a mid-sized corporate law firm like Titus and Co that employs 28 juniors. The big law filik such as AZB or Amarchand & Mangaldas or Luthra & Luthra have to do all the groundwork for the counsel, from humouring the clerk to ensure the A-lister turns up on the hearing day to sourcing appropriate foreign judgments in emerging areas such as environmental and patent laws. “We are partners in this. There are so few lawyers and so many matters,” points out Diljeet Titus.As the trust between individuals has broken down, governments have questioned corporates and corporates are questioning each other, and an array of new issues has come up. The courts have become stronger. “The lawyer,” says Sundaram, with the flourish that has seen him pick up many Dhurandhares and Senakas at pricey art auctions, “has emerged as the modern day purohit.” Each purohit is head priest of a particular style. Says Karanjawala, “Harish is the closest example in today's bar to Fali Nariman; Rohinton has the best law library in his brain; Mukul is easily India's busiest lawyer while Manu Singhvi is the greatest multi-tasker.” Salve has managed a fine balancing act where he has represented Mulayam Singh Yadav and Mayawati, Parkash Singh Badal and Amarinder Singh, Lalit Modi and Subhash Chandra and even the Ambani brothers, of course in different cases. Jethmalani is the man to call for anyone in trouble. In judicial circles he is known as the first resort for the last resort. Even Jethmalani’s junior Satish Maneshinde, who came to Mumbai in I993 as a penniless law graduate from Karnataka, shot to fame (and wealth) after he got bail for Sanjay Dutt in 1996. Now he owns a plush office in Worli and has become a one-stop shop for celebrities in trouble.Which of the following is not true about Ram Jethmalani?
 ....
MCQ-> Read the following passage based on an Interview to answer the given questions based on it. Certain words are printed in bold to help you locate them while answering some of the questions.A spate of farmer suicides linked to harassment by recovery agents employed by micro finance institutions (MFLs) in Andhra Pradesh spurned the state government to bring in regulation to protect consumer interests. But, while the Bill has brought into sharp focus the need for consumer protection, it tries to micro-manage MFI operations and in the process it could scuttle some of the crucial bene ts that MFIs bring to farmers, says the author of Micro nance India, State Of The Sec-for Report 2010. In an interview he points out that prudent regulation can ensure the original goal of the MFIs - social uplift of the poor. Do you feel the AP Bill to regulate Mils is well thought out? Does it ensure fairness to the borrowers and the long-term health of the sector? The AP Bill has brought into sharp focus the need for customer protection in four critical areas. First is pricing. Second is lender's liability whether the lender can give too much loan without assessing the customer's ability to pay. Third is the structure of loan repayment - whether you can ask money on a weekly basis from people who don't produce weekly incomes. Fourth is the practices that attend to how you deal with defaults. But the Act should have looked at the positive bene ts that institutions could bring in, and where they need to be regulated in the interests of the customers. It should have brought only those features in. Say, you want the recovery practices to be consistent with what the customers can really manage. If the customer is aggrieved and complains that somebody is harassing him, then those complaints should be investigated by the District Rural Development Authority. Instead what the Bill says is that MF1s cannot go to the customer's premises to ask for recovery and that all transactions will be done in the Panchayat of ce. With great dif culty, MFIs brought services to the door of people. It is such a relief for the customers not to be spending time out going to banks or Panchayat of ces, which could be 10 km away in some cases. A facility which has brought some relief to people is being shut. Moreover, you are practically telling the MFI where it should do business and how it should do it. Social responsibilities were inbuilt when the MIrls were rst conceived. If kills go for profit with loose regulations, how are they different from moneylenders? Even among moneylenders there are very good people who take care of the customer's circumstance, and there are really bad ones. A large number of the MF1s are good and there are some who are coercive because of the kind of prices and processes they have adopted. But Moneylenders never got this organised. They did not have such a large footprint. An MFI brought in organisation, it mobilized the equity, it brought in commercial funding. It invested in systems. It appointed a large number of people. But some of them exacted a much higher price than they should have. They wanted to break even very fast and greed did take over in some cases.Are the for-profit 'Ms the only ones harassing people for recoveries? Some not-for-profit out ts have also adopted the same kind of recovery methods. That may be because you have to show that you are very ef cient in your recovery methods and that your portfolio is of a very high quality if you want to get commercial funding from a bank. In fact, among for-profits there are many who have sensible recovery practices. Some have fortnightly recovery, some have monthly recovery. So we have differing practices. We just describe a few dominant ones and assume every for-profit MFI operates like that. How can you introduce regulations to ensure social upliftment in a sector that is moving towards for-profit models? I am not really concerned whether someone wants to make a profit or not The bottom-line for me is customer protection. The rst area is fair practices. Are you telling your customers how the loan is structured ? Are you being transparent about your performance? There should also be a lender's liability attached to what you do. Suppose you lend excessively to a customer without assessing their ability to service the loan, you have to take the hit. Then there's the question of limiting returns. You can say that an MFI cannot have a return on assets more than X, a return on equity of more than Y. Then suppose there is a privately promoted MFI, there should be a regulation to ensure the MFI cannot access equity markets till a certain amount of time. MFIs went to markets perhaps because of the need to grow too big too fast. The government thought they were making profit off the poor, and that's an indirect reason why they decided to clamp down on MF1s. If you say an MFI won't go to capital market, then it will keep political compulsions under rein.Which of the following best explains "structure of loan repayment" in this context of the rst question asked to the author ?....
MCQ-> Analyse the following passage and provide appropriate answers for the follow. Popper claimed, scientific beliefs are universal in character, and have to be so if they are to serve us in explanation and prediction. For the universality of a scientific belief implies that, no matter how many instances we have found positive, there will always be an indefinite number of unexamined instances which may or may not also be positive. We have no good reason for supposing that any of these unexamined instances will be positive, or will be negative, so we must refrain from drawing any conclusions. On the other hand, a single negative instance is sufficient to prove that the belief is false, for such an instance is logically incompatible with the universal truth of the belief. Provided, therefore, that the instance is accepted as negative we must conclude that the scientific belief is false. In short, we can sometimes deduce that a universal scientific belief is false but we can never induce that a universal scientific belief is true. It is sometimes argued that this 'asymmetry' between verification and falsification is not nearly as pronounced as Popper declared it to be. Thus, there is no inconsistency in holding that a universal scientific belief is false despite any number of positive instances; and there is no inconsistency either in holding that a universal scientific belief is true despite the evidence of a negative instance. For the belief that an instance is negative is itself a scientific belief and may be falsified by experimental evidence which we accept and which is inconsistent with it. When, for example, we draw a right-angled triangle on the surface of a sphere using parts of three great circles for its sides, and discover that for this triangle Pythagoras' Theorem does not hold, we may decide that this apparently negative instance is not really negative because it is not a genuine instance at all. Triangles drawn on the surfaces of spheres are not the sort of triangles which fall within the scope of Pythagoras' Theorem. Falsification, that is to say, is no more capable of yielding conclusive rejections of scientific belief than verification is of yielding conclusive acceptances of scientific beliefs. The asymmetry between falsification and verification, therefore, has less logical significance than Popper supposed. We should, though, resist this reasoning. Falsifications may not be conclusive, for the acceptances on which rejections are based are always provisional acceptances. But, nevertheless, it remains the case that, in falsification, if we accept falsifying claims then, to remain consistent, we must reject falsified claims. On the other hand, although verifications are also not conclusive, our acceptance or rejection of verifying instances has no implications concerning the acceptance or rejection of verified claims. Falsifying claims sometimes give us a good reason for rejecting a scientific belief, namely when the claims are accepted. But verifying claims, even when accepted, give us no good and appropriate reason for accepting any scientific belief, because any such reason would have to be inductive to be appropriate and there are no good inductive reasons.According to Popper, the statement "Scientific beliefs are universal in character" implies that....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions