1. The code class Descendant : virtual public Ancestor indicates that





Write Comment

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->There are 50 students in a class. In a class test 22 students get 25 marks each, 18 students get 30 marks each. Each of the remaining gets 16 marks. The average mark of the whole class is :....
QA->In a class of 20 students the average age is 16 years.If the age of the class teacher is added to that of students,the average age of the class becomes 17 years.What is the age of the teacher?....
QA->Archaeologists have recently unearthed the remains of a 750-year-old city, founded by the descendant’s of Genghis Khan, along the river Volga in Russia. Which is that city?....
QA->Who is the author of the book " Descendant of Man " ?....
QA->The first digit from the left on PIN code indicates....
MCQ-> Read the following passage carefully and answer the given questions. Certain words/phrases have been given in bold to help you locate them while answering some of the questions. Virtual currencies are growing in popularity. While the collective value of virtual currencies is still a fraction of the total U.S. Dollars in circulation, the use of virtual currencies as a payment mechanism of transfer of value is gaining momentum. Additionally, the number of entities (issuers, exchangers and intermediaries, to name just a few) that engage in virtual currency transactions is increasing and these entities often need access to traditional banking services.Virtual currencies are digital representations of value that function as a medium of exchange, a unit of account and a store of value (buy now redeem later policy). In many cases, virtual currencies are “convertible” currencies; they are not legal lenders, but they have an equivalent value in real currency. Despite what seems to be a tremendous interest in virtual currencies their overall value is still extremely small relative to other payment mechanisms, such as cash, cheques and credit and debit cards. The virtual currency landscape includes many participants from the merchant that accepts the virtual currency, to the intermediary that exchanges the virtual currency on behalf of the merchant, to the exchange that actually converts the virtual currency to the real currency to the electronic wallet provider that holds the virtual currency on behalf of its owner. Accordingly, opportunities abound for community banks to provide services to entities engaged in virtual currency activities. Eventually, it is also possible that community banks may find themselves holding virtual currency on their own balance sheets.Launched in 2009, Silicon is currently the largest and most popular virtual currency. However, many other virtual currencies have emerged over the past few years, such as Litecoin, Dogecoin, Peercoin and these provide even more anonymity to its users than that provided by Bitcoin.As the virtual currency landscape is fraught with dangers, what important risks should community bankers consider?The most significant is compliance risk- a subset of legal risk. Specifically, virtual currency administrators or legal exchangers may present risks similar to other money transmitters, as well in presenting their own unique risks. Quite simply, many users of virtual currencies do so because of the perceptions that transactions conaucted using virtual currencies are anonymous. The less-than transparent nature of the transactions, :nay make it more difficult for a inancial institution to truly know and understand the activities of its customer and whether the customer’s activities are legal. Therefore, these transactions may present a higher risk for banks and require additional due diligence and monitoring.Another important risk for community banks to consider is credit risk. How should a community bank respond if a borrower wants to specifically post Bitcoin or another virtual currency as collateral for a loan? For many, virtual currencies are simply another form of cash, so it is not hard to analyse that bankers will face such a scenario at some point. In this case, caution is appropriate. Bankers should carefully weigh the pros and cons of extending any loan secured by Bitcoin or other virtual currencies (in whole or in part), or where the source of loan repayment is in some way dependent on the virtual currency. For one, the value of Bitcoin in particular has been volatile. Then, the collateral value could fluctuate widely from day-to-day. Bankers also need to think about control over the account. ‘How does the banker control access to a virtual wallet, and how can it control the borrower’s access to the virtual wallet? In the event of a loan default, the bank would need to take control of the virtual currency. This would require access to the borrower’s virtual wallet and private key. All of this suggests that the loan agreement needs to be carefully crafted and that additional steps need to be taken to ensure the bank has a perfected lift on the virtual currency.Virtual currencies bring with them, both opportunities and challenges, and they are likely here to stay. Although, it is too early to determine just how prevalent they will be in the coming years, we too expect that the virtual participants in the virtual currency ecosystem will increasingly intersect with the banking industry.Which of the following is the meaning of the phrase ‘fraught with dangers’ as mentioned in the passage?
 ....
MCQ-> The current debate on intellectual property rights (IPRs) raises a number of important issues concerning the strategy and policies for building a more dynamic national agricultural research system, the relative roles of public and private sectors, and the role of agribusiness multinational corporations (MNCs). This debate has been stimulated by the international agreement on Trade Related Intellectual Property Rights (TRIPs), negotiated as part of the Uruguay Round. TRIPs, for the first time, seeks to bring innovations in agricultural technology under a new worldwide IPR regime. The agribusiness MNCs (along with pharmaceutical companies) played a leading part in lobbying for such a regime during the Uruguay Round negotiations. The argument was that incentives are necessary to stimulate innovations, and that this calls for a system of patents which gives innovators the sole right to use (or sell/lease the right to use) their innovations for a specified period and protects them against unauthorised copying or use. With strong support of their national governments, they were influential in shaping the agreement on TRIPs, which eventually emerged from the Uruguay Round. The current debate on TRIPs in India - as indeed elsewhere - echoes wider concerns about ‘privatisation’ of research and allowing a free field for MNCs in the sphere of biotechnology and agriculture. The agribusiness corporations, and those with unbounded faith in the power of science to overcome all likely problems, point to the vast potential that new technology holds for solving the problems of hunger, malnutrition and poverty in the world. The exploitation of this potential should be encouraged and this is best done by the private sector for which patents are essential. Some, who do not necessarily accept this optimism, argue that fears of MNC domination are exaggerated and that farmers will accept their products only if they decisively outperform the available alternatives. Those who argue against agreeing to introduce an IPR regime in agriculture and encouraging private sector research are apprehensive that this will work to the disadvantage of farmers by making them more and more dependent on monopolistic MNCs. A different, though related apprehension is that extensive use of hybrids and genetically engineered new varieties might increase the vulnerability of agriculture to outbreaks of pests and diseases. The larger, longer-term consequences of reduced biodiversity that may follow from the use of specially bred varieties are also another cause for concern. Moreover, corporations, driven by the profit motive, will necessarily tend to underplay, if not ignore, potential adverse consequences, especially those which are unknown and which may manifest themselves only over a relatively long period. On the other hand, high-pressure advertising and aggressive sales campaigns by private companies can seduce farmers into accepting varieties without being aware of potential adverse effects and the possibility of disastrous consequences for their livelihood if these varieties happen to fail. There is no provision under the laws, as they now exist, for compensating users against such eventualities. Excessive preoccupation with seeds and seed material has obscured other important issues involved in reviewing the research policy. We need to remind ourselves that improved varieties by themselves are not sufficient for sustained growth of yields. in our own experience, some of the early high yielding varieties (HYVs) of rice and wheat were found susceptible to widespread pest attacks; and some had problems of grain quality. Further research was necessary to solve these problems. This largely successful research was almost entirely done in public research institutions. Of course, it could in principle have been done by private companies, but whether they choose to do so depends crucially on the extent of the loss in market for their original introductions on account of the above factors and whether the companies are financially strong enough to absorb the ‘losses’, invest in research to correct the deficiencies and recover the lost market. Public research, which is not driven by profit, is better placed to take corrective action. Research for improving common pool resource management, maintaining ecological health and ensuring sustainability is both critical and also demanding in terms of technological challenge and resource requirements. As such research is crucial to the impact of new varieties, chemicals and equipment in the farmer’s field, private companies should be interested in such research. But their primary interest is in the sale of seed materials, chemicals, equipment and other inputs produced by them. Knowledge and techniques for resource management are not ‘marketable’ in the same way as those inputs. Their application to land, water and forests has a long gestation and their efficacy depends on resolving difficult problems such as designing institutions for proper and equitable management of common pool resources. Public or quasi-public research institutions informed by broader, long-term concerns can only do such work. The public sector must therefore continue to play a major role in the national research system. It is both wrong and misleading to pose the problem in terms of public sector versus private sector or of privatisation of research. We need to address problems likely to arise on account of the public-private sector complementarity, and ensure that the public research system performs efficiently. Complementarity between various elements of research raises several issues in implementing an IPR regime. Private companies do not produce new varieties and inputs entirely as a result of their own research. Almost all technological improvement is based on knowledge and experience accumulated from the past, and the results of basic and applied research in public and quasi-public institutions (universities, research organisations). Moreover, as is increasingly recognised, accumulated stock of knowledge does not reside only in the scientific community and its academic publications, but is also widely diffused in traditions and folk knowledge of local communities all over. The deciphering of the structure and functioning of DNA forms the basis of much of modern biotechnology. But this fundamental breakthrough is a ‘public good’ freely accessible in the public domain and usable free of any charge. Various techniques developed using that knowledge can however be, and are, patented for private profit. Similarly, private corporations draw extensively, and without any charge, on germplasm available in varieties of plants species (neem and turmeric are by now famous examples). Publicly funded gene banks as well as new varieties bred by public sector research stations can also be used freely by private enterprises for developing their own varieties and seek patent protection for them. Should private breeders be allowed free use of basic scientific discoveries? Should the repositories of traditional knowledge and germplasm be collected which are maintained and improved by publicly funded organisations? Or should users be made to pay for such use? If they are to pay, what should be the basis of compensation? Should the compensation be for individuals or (or communities/institutions to which they belong? Should individual institutions be given the right of patenting their innovations? These are some of the important issues that deserve more attention than they now get and need serious detailed study to evolve reasonably satisfactory, fair and workable solutions. Finally, the tendency to equate the public sector with the government is wrong. The public space is much wider than government departments and includes co- operatives, universities, public trusts and a variety of non-governmental organisations (NGOs). Giving greater autonomy to research organisations from government control and giving non- government public institutions the space and resources to play a larger, more effective role in research, is therefore an issue of direct relevance in restructuring the public research system.Which one of the following statements describes an important issue, or important issues, not being raised in the context of the current debate on IPRs?
 ....
MCQ->The code class Descendant : virtual public Ancestor indicates that....
MCQ->What will be the output of the following program? #include<iostream.h> class A { public: void BixFunction(void) { cout<< "Class A" << endl; } }; class B: public A { public: void BixFunction(void) { cout<< "Class B" << endl; } }; class C : public B { public: void BixFunction(void) { cout<< "Class C" << endl; } }; int main() { A ptr; B objB; ptr = &objB; ptr = new C(); ptr->BixFunction(); return 0; }....
MCQ->Which of the following statements are correct about the C#.NET code snippet given below? namespace IndiabixConsoleApplication { class index { protected int count; public index() { count = 0; } } class index1: index { public void increment() { count = count +1; } } class MyProgram { static void Main(string[] args) { index1 i = new index1(); i.increment(); } } } count should be declared as public if it is to become available in the inheritance chain. count should be declared as protected if it is to become available in the inheritance chain. While constructing an object referred to by i firstly constructor of index class will be called followed by constructor of index1 class. Constructor of index class does not get inherited in index1 class. count should be declared as Friend if it is to become available in the inheritance chain.....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions