1. Using the wardrobe structure within the ShopList structure is an example of a good programming principle, known as _____





Write Comment

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->For implementing recursion in a programming language, its compiler uses the following data structure extensively:....
QA->Goodwill, trademarks, patent etc. are the example of _____ assets.....
QA->Monsoon winds are the example for _____ type of winds?....
QA->The Kudumbashree project aimed to wipe out the absolute poverty in the State within _____ years?....
QA->Method of cultivating plants without using soil but by using nutrient solution?....
MCQ->Using the wardrobe structure within the ShopList structure is an example of a good programming principle, known as _____....
MCQ-> In the following passage some of the words have been left out. Read the passage carefully and choose the correct answer to each question out of the four alternative and fill in the blanksA though we can _____(I)
 _____ the _____(II)_____ bodies of our solar system _____(III)_____ a telescope, it is only _____(IV)_____ who can _____(V)_____ the depths of outer space. It is reported that they have seen _____(VI)_____ galaxies, stars taking _____(VII)_____ and _____(VIII)_____ black holes’. They say that the deeper they look _____(IX)_____ the universe, the more they know _____(X)_____ the universe originated.(I)
 ....
MCQ-> Studies of the factors governing reading development in young children have achieved a remarkable degree of consensus over the past two decades. The consensus concerns the causal role of ‘phonological skills in young children’s reading progress. Children who have good phonological skills, or good ‘phonological awareness’ become good readers and good spellers. Children with poor phonological skills progress more poorly. In particular, those who have a specific phonological deficit are likely to be classified as dyslexic by the time that they are 9 or 10 years old.Phonological skills in young children can be measured at a number of different levels. The term phonological awareness is a global one, and refers to a deficit in recognising smaller units of sound within spoken words. Development work has shown that this deficit can be at the level of syllables, of onsets and rimes, or phonemes. For example, a 4-year old child might have difficulty in recognising that a word like valentine has three syllables, suggesting a lack of syllabic awareness. A five-year-old might have difficulty in recognizing that the odd work out in the set of words fan, cat, hat, mat is fan. This task requires an awareness of the sub-syllabic units of the onset and the rime. The onset corresponds to any initial consonants in a syllable words, and the rime corresponds to the vowel and to any following consonants. Rimes correspond to rhyme in single-syllable words, and so the rime in fan differs from the rime in cat, hat and mat. In longer words, rime and rhyme may differ. The onsets in val:en:tine are /v/ and /t/, and the rimes correspond to the selling patterns ‘al’, ‘en’ and’ ine’.A six-year-old might have difficulty in recognising that plea and pray begin with the same initial sound. This is a phonemic judgement. Although the initial phoneme /p/ is shared between the two words, in plea it is part of the onset ‘pl’ and in pray it is part if the onset ‘pr’. Until children can segment the onset (or the rime), such phonemic judgements are difficult for them to make. In fact, a recent survey of different developmental studies has shown that the different levels of phonological awareness appear to emerge sequentially. The awareness of syllables, onsets, and rimes appears to merge at around the ages of 3 and 4, long before most children go to school. The awareness of phonemes, on the other hand, usually emerges at around the age of 5 or 6, when children have been taught to read for about a year. An awareness of onsets and rimes thus appears to be a precursor of reading, whereas an awareness of phonemes at every serial position in a word only appears to develop as reading is taught. The onset-rime and phonemic levels of phonological structure, however, are not distinct. Many onsets in English are single phonemes, and so are some rimes (e.g. sea, go, zoo).The early availability of onsets and rimes is supported by studies that have compared the development of phonological awareness of onsets, rimes, and phonemes in the same subjects using the same phonological awareness tasks. For example, a study by Treiman and Zudowski used a same/different judgement task based on the beginning or the end sounds of words. In the beginning sound task, the words either began with the same onset, as in plea and plank, or shared only the initial phoneme, as in plea and pray. In the end-sound task, the words either shared the entire rime, as in spit and wit, or shared only the final phoneme, as in rat and wit. Treiman and Zudowski showed that four- and five-year-old children found the onset-rime version of the same/different task significantly easier than the version based on phonemes. Only the sixyear- olds, who had been learning to read for about a year, were able to perform both versions of the tasks with an equal level of success.From the following statements, pick out the true statement according to the passage.
 ....
MCQ-> Modern science, exclusive of geometry, is a comparatively recent creation and can be said to have originated with Galileo and Newton. Galileo was the first scientist to recognize clearly that the only way to further our understanding of the physical world was to resort to experiment. However obvious Galileo’s contention may appear in the light of our present knowledge, it remains a fact that the Greeks, in spite of their proficiency in geometry, never seem to have realized the importance of experiment. To a certain extent this may be attributed to the crudeness of their instruments of measurement. Still an excuse of this sort can scarcely be put forward when the elementary nature of Galileo’s experiments and observations is recalled. Watching a lamp oscillate in the cathedral of Pisa, dropping bodies from the leaning tower of Pisa, rolling balls down inclined planes, noticing the magnifying effect of water in a spherical glass vase, such was the nature of Galileo’s experiments and observations. As can be seen, they might just as well have been performed by the Greeks. At any rate, it was thanks to such experiments that Galileo discovered the fundamental law of dynamics, according to which the acceleration imparted to a body is proportional to the force acting upon it.The next advance was due to Newton, the greatest scientist of all time if account be taken of his joint contributions to mathematics and physics. As a physicist, he was of course an ardent adherent of the empirical method, but his greatest title to fame lies in another direction. Prior to Newton, mathematics, chiefly in the form of geometry, had been studied as a fine art without any view to its physical applications other than in very trivial cases. But with Newton all the resources of mathematics were turned to advantage in the solution of physical problems. Thenceforth mathematics appeared as an instrument of discovery, the most powerful one known to man, multiplying the power of thought just as in the mechanical domain the lever multiplied our physical action. It is this application of mathematics to the solution of physical problems, this combination of two separate fields of investigation, which constitutes the essential characteristic of the Newtonian method. Thus problems of physics were metamorphosed into problems of mathematics.But in Newton’s day the mathematical instrument was still in a very backward state of development. In this field again Newton showed the mark of genius by inventing the integral calculus. As a result of this remarkable discovery, problems, which would have baffled Archimedes, were solved with ease. We know that in Newton’s hands this new departure in scientific method led to the discovery of the law of gravitation. But here again the real significance of Newton’s achievement lay not so much in the exact quantitative formulation of the law of attraction, as in his having established the presence of law and order at least in one important realm of nature, namely, in the motions of heavenly bodies. Nature thus exhibited rationality and was not mere blind chaos and uncertainty. To be sure, Newton’s investigations had been concerned with but a small group of natural phenomena, but it appeared unlikely that this mathematical law and order should turn out to be restricted to certain special phenomena; and the feeling was general that all the physical processes of nature would prove to be unfolding themselves according to rigorous mathematical laws.When Einstein, in 1905, published his celebrated paper on the electrodynamics of moving bodies, he remarked that the difficulties, which surrouned the equations of electrodynamics, together with the negative experiments of Michelson and others, would be obviated if we extended the validity of the Newtonian principle of the relativity of Galilean motion, which applies solely to mechanical phenomena, so as to include all manner of phenomena: electrodynamics, optical etc. When extended in this way the Newtonian principle of relativity became Einstein’s special principle of relativity. Its significance lay in its assertion that absolute Galilean motion or absolute velocity must ever escape all experimental detection. Henceforth absolute velocity should be conceived of as physically meaningless, not only in the particular ream of mechanics, as in Newton’s day, but in the entire realm of physical phenomena. Einstein’s special principle, by adding increased emphasis to this relativity of velocity, making absolute velocity metaphysically meaningless, created a still more profound distinction between velocity and accelerated or rotational motion. This latter type of motion remained absolute and real as before. It is most important to understand this point and to realize that Einstein’s special principle is merely an extension of the validity of the classical Newtonian principle to all classes of phenomena.According to the author, why did the Greeks NOT conduct experiments to understand the physical world?
 ....
MCQ->Identify the correct sequence of words would most that aptly fit the blanks in the following passage. It is _____ (i) _____ that the accused had _____ (ii) _____ _____ (iii) _____ from all criminal activities by adopting the _____ (iv) ____ _ of a sanyasi. However, despite repeated requests from the counsel for prosecution, the court has _____ (v) _____ a lie detector to ascertain the truth.....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions