1. Which one of the following is most likely used for measuring the rate of electron flow?






Write Comment

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->From which one among the following water sources; the water is likely to be contaminated with fluoride?....
QA->From which one among the following water sources, the water is likely to be contaminated with fluoride?....
QA->The difference between the total present value of a stream of cash flow of a given rate of discount and the initial capital outlay is known as :....
QA->Which instrument meant for measuring the rate of respiration?....
QA->What is an instrument for measuring the rate of transpiration?....
MCQ-> Directions : Choose the word/group of words which is most opposite in meaning to the word / group of words printed in bold as used in the passage.When times are hard, doomsayers are aplenty. The problem is that if you listen to them too carefully, you tend to overlook the most obvious signs of change. 2011 was a bad year. Can 2012 be any worse? Doomsday forecasts are the easiest to make these days. So let's try a contrarian's forecast instead. Let's start with the global economy. We have seen a steady flow of good news from the US. The employment situation seems to be improving rapidly and consumer sentiment, reflected in retail expenditures on discretionary items like electronics and clothes, has picked up. If these trends sustain, the US might post better growth numbers for 2012 than the 1.5 - 1.8 percent being forecast currently. Japan is likely to pull out of a recession in 2012 as post-earthquake reconstruction efforts gather momentum and the fiscal stimulus announced in 2011 begin to pay off. The consensus estimate for growth in Japan is a respectable 2 percent for 2012. The "hard landing' scenario for China remains and will remain a myth. Growth might decelerate further from the 9 percent that is expected to clock in 2011 but is unlikely to drop below 8 - 8.5 percent in 2012. Europe is certainly in a spot of trouble. It is perhaps already in recession and for 2012 it is likely to post mildly negative growth. The risk of implosion has dwindled over the last few months- peripheral economies like Greece, Italy and Spain have new governments in place and have made progress towards genuine economic reform. Even with some these positive factors in place, we have to accept the fact that global growth in 2012 will be tepid. But there is a flipside to this. Softer growth means lower demand for commodities, and this is likely to drive a correction in commodity prices. Lower commodity inflation will enable emerging market central banks to reverse their monetary stance. China, for instance, has already reversed its stance and have pared its reserve ratio twice. The RBI also seems poised for a reversal in its rate cycle as headline inflation seems well one its way to its target of 7 percent for March 2012. That said, oil might be an exception to the general trend in commodities. Rising geopolitical tensions, particularly the continuing face-off between Iran and the US, might lead to a spurt in prices. It might make sense for our oil companies to hedge this risk instead of buying oil in the spot market. As inflation fears abate, and emerging market central banks begin to cut rates, two things could happen. Lower commodity inflation would mean lower interest rates and better credit availability. This could set the floor to growth and slowly reverse the business cycle within these economies. Second, as the fear of untamed, runaway inflation in these economies abates, the global investor's comfort levels with their markets will increase. Which of the emerging markets will outperform and who will leave behind? In an environment in which global growth is likely to be weak, economies like India that have a powerful domestic consumption dynamic should lead; those dependent on exports should, prima facie, fall behind. Specifically for India, a fall in the exchange rate could not have come at a better time. It will help Indian exporters gain market share even if global trade remains depressed. More importantly, it could lead to massive import substitution that favours domestic producers.Let’s now focus on India and start with a caveat. It is important not to confuse a short run cyclical dip with a permanent derating of its long-term structural potential. The arithmetic is simple. Our growth rate can be in the range of 7-10 percent depending on policy action. Ten percent if we get everything right, 7 percent if we get it all wrong. Which policies and reforms are critical to taking us to our 10 percent potential? In judging this, let’s again be careful. Let’s not go by the laundry list of reforms that FIIs like to wave: The increase in foreign equity limits in foreign shareholding, greater voting rights for institutional shareholders in banks, FDI in retail, etc. These can have an impact only at the margin. We need not bend over backwards to appease the FIIs through these reforms they will invest in our markets when momentum picks up and will be the first to exit when the momentum flags, reforms or not. The reforms that we need are the ones that can actually raise our sustainable longterm growth rate. These have to come in areas like better targeting of subsidies, making projects in infrastructure viable so that they draw capital, raising the productivity of agriculture, improving healthcare and education, bringing the parallel economy under the tax net, implementing fundamental reforms in taxation like GST and the direct tax code and finally easing the MYRIAD
 
rules and regulations that make doing business in India such a nightmare. A number of these things do not require new legislation and can be done through executive order.MYRIAD
 ....
MCQ-> Directions: Read the following passage carefully and answer the questions given below it. Certain words/phrases have been printed in bold to help you locate them while answering some of the questions. When times are hard, doomsayers are aplenty. The problem is that if you listen to them too carefully, you tend to overlook the most obvious signs of change. 2011 was a bad year. Can 2012 be any worse? Doomsday forecasts are the easiest to make these days. So let's try a contrarian's forecast instead. Let's start with the global economy. We have seen a steady flow of good news from the US. The employment situation seems to be improving rapidly and consumer sentiment, reflected in retail expenditures on discretionary items like electronics and clothes, has picked up. If these trends sustain, the US might post better growth numbers for 2012 than the 1.5 - 1.8 percent being forecast currently. Japan is likely to pull out of a recession in 2012 as post-earthquake reconstruction efforts gather momentum and the fiscal stimulus announced in 2011 begin to pay off. The consensus estimate for growth in Japan is a respectable 2 percent for 2012. The "hard landing' scenario for China remains and will remain a myth. Growth might decelerate further from the 9 percent that is expected to clock in 2011 but is unlikely to drop below 8 - 8.5 percent in 2012. Europe is certainly in a spot of trouble. It is perhaps already in recession and for 2012 it is likely to post mildly negative growth. The risk of implosion has dwindled over the last few months- peripheral economies like Greece, Italy and Spain have new governments in place and have made progress towards genuine economic reform. Even with some these positive factors in place, we have to accept the fact that global growth in 2012 will be tepid. But there is a flipside to this. Softer growth means lower demand for commodities, and this is likely to drive a correction in commodity prices. Lower commodity inflation will enable emerging market central banks to reverse their monetary stance. China, for instance, has already reversed its stance and have pared its reserve ratio twice. The RBI also seems poised for a reversal in its rate cycle as headline inflation seems well one its way to its target of 7 percent for March 2012. That said, oil might be an exception to the general trend in commodities. Rising geopolitical tensions, particularly the continuing face-off between Iran and the US, might lead to a spurt in prices. It might make sense for our oil companies to hedge this risk instead of buying oil in the spot market. As inflation fears abate, and emerging market central banks begin to cut rates, two things could happen. Lower commodity inflation would mean lower interest rates and better credit availability. This could set the floor to growth and slowly reverse the business cycle within these economies. Second, as the fear of untamed, runaway inflation in these economies abates, the global investor's comfort levels with their markets will increase. Which of the emerging markets will outperform and who will leave behind? In an environment in which global growth is likely to be weak, economies like India that have a powerful domestic consumption dynamic should lead; those dependent on exports should, prima facie, fall behind. Specifically for India, a fall in the exchange rate could not have come at a better time. It will help Indian exporters gain market share even if global trade remains depressed. More importantly, it could lead to massive import substitution that favours domestic producers.Let’s now focus on India and start with a caveat. It is important not to confuse a short run cyclical dip with a permanent derating of its long-term structural potential. The arithmetic is simple. Our growth rate can be in the range of 7-10 percent depending on policy action. Ten percent if we get everything right, 7 percent if we get it all wrong. Which policies and reforms are critical to taking us to our 10 percent potential? In judging this, let’s again be careful. Let’s not go by the laundry list of reforms that FIIs like to wave: The increase in foreign equity limits in foreign shareholding, greater voting rights for institutional shareholders in banks, FDI in retail, etc. These can have an impact only at the margin. We need not bend over backwards to appease the FIIs through these reforms they will invest in our markets when momentum picks up and will be the first to exit when the momentum flags, reforms or not. The reforms that we need are the ones that can actually raise our sustainable longterm growth rate. These have to come in areas like better targeting of subsidies, making projects in infrastructure viable so that they draw capital, raising the productivity of agriculture, improving healthcare and education, bringing the parallel economy under the tax net, implementing fundamental reforms in taxation like GST and the direct tax code and finally easing the myriad rules and regulations that make doing business in India such a nightmare. A number of these things do not require new legislation and can be done through executive order.Which of the following is not true according to the passage?
 ....
MCQ-> In a modern computer, electronic and magnetic storage technologies play complementary roles. Electronic memory chips are fast but volatile (their contents are lost when the computer is unplugged). Magnetic tapes and hard disks are slower, but have the advantage that they are non-volatile, so that they can be used to store software and documents even when the power is off.In laboratories around the world, however, researchers are hoping to achieve the best of both worlds. They are trying to build magnetic memory chips that could be used in place of today’s electronics. These magnetic memories would be nonvolatile; but they would also he faster, would consume less power, and would be able to stand up to hazardous environments more easily. Such chips would have obvious applications in storage cards for digital cameras and music- players; they would enable handheld and laptop computers to boot up more quickly and to operate for longer; they would allow desktop computers to run faster; they would doubtless have military and space-faring advantages too. But although the theory behind them looks solid, there are tricky practical problems and need to be overcome.Two different approaches, based on different magnetic phenomena, are being pursued. The first, being investigated by Gary Prinz and his colleagues at the Naval Research Laboratory (NRL) in Washington, D.c), exploits the fact that the electrical resistance of some materials changes in the presence of magnetic field— a phenomenon known as magneto- resistance. For some multi-layered materials this effect is particularly powerful and is, accordingly, called “giant” magneto-resistance (GMR). Since 1997, the exploitation of GMR has made cheap multi-gigabyte hard disks commonplace. The magnetic orientations of the magnetised spots on the surface of a spinning disk are detected by measuring the changes they induce in the resistance of a tiny sensor. This technique is so sensitive that it means the spots can be made smaller and packed closer together than was previously possible, thus increasing the capacity and reducing the size and cost of a disk drive. Dr. Prinz and his colleagues are now exploiting the same phenomenon on the surface of memory chips, rather spinning disks. In a conventional memory chip, each binary digit (bit) of data is represented using a capacitor-reservoir of electrical charge that is either empty or fill -to represent a zero or a one. In the NRL’s magnetic design, by contrast, each bit is stored in a magnetic element in the form of a vertical pillar of magnetisable material. A matrix of wires passing above and below the elements allows each to be magnetised, either clockwise or anti-clockwise, to represent zero or one. Another set of wires allows current to pass through any particular element. By measuring an element’s resistance you can determine its magnetic orientation, and hence whether it is storing a zero or a one. Since the elements retain their magnetic orientation even when the power is off, the result is non-volatile memory. Unlike the elements of an electronic memory, a magnetic memory’s elements are not easily disrupted by radiation. And compared with electronic memories, whose capacitors need constant topping up, magnetic memories are simpler and consume less power. The NRL researchers plan to commercialise their device through a company called Non-V olatile Electronics, which recently began work on the necessary processing and fabrication techniques. But it will be some years before the first chips roll off the production line.Most attention in the field in focused on an alternative approach based on magnetic tunnel-junctions (MTJs), which are being investigated by researchers at chipmakers such as IBM, Motorola, Siemens and Hewlett-Packard. IBM’s research team, led by Stuart Parkin, has already created a 500-element working prototype that operates at 20 times the speed of conventional memory chips and consumes 1% of the power. Each element consists of a sandwich of two layers of magnetisable material separated by a barrier of aluminium oxide just four or five atoms thick. The polarisation of lower magnetisable layer is fixed in one direction, but that of the upper layer can be set (again, by passing a current through a matrix of control wires) either to the left or to the right, to store a zero or a one. The polarisations of the two layers are then either the same or opposite directions.Although the aluminum-oxide barrier is an electrical insulator, it is so thin that electrons are able to jump across it via a quantum-mechanical effect called tunnelling. It turns out that such tunnelling is easier when the two magnetic layers are polarised in the same direction than when they are polarised in opposite directions. So, by measuring the current that flows through the sandwich, it is possible to determine the alignment of the topmost layer, and hence whether it is storing a zero or a one.To build a full-scale memory chip based on MTJs is, however, no easy matter. According to Paulo Freitas, an expert on chip manufacturing at the Technical University of Lisbon, magnetic memory elements will have to become far smaller and more reliable than current prototypes if they are to compete with electronic memory. At the same time, they will have to be sensitive enough to respond when the appropriate wires in the control matrix are switched on, but not so sensitive that they respond when a neighbouring elements is changed. Despite these difficulties, the general consensus is that MTJs are the more promising ideas. Dr. Parkin says his group evaluated the GMR approach and decided not to pursue it, despite the fact that IBM pioneered GMR in hard disks. Dr. Prinz, however, contends that his plan will eventually offer higher storage densities and lower production costs.Not content with shaking up the multi-billion-dollar market for computer memory, some researchers have even more ambitious plans for magnetic computing. In a paper published last month in Science, Russell Cowburn and Mark Well and of Cambridge University outlined research that could form the basis of a magnetic microprocessor — a chip capable of manipulating (rather than merely storing) information magnetically. In place of conducting wires, a magnetic processor would have rows of magnetic dots, each of which could be polarised in one of two directions. Individual bits of information would travel down the rows as magnetic pulses, changing the orientation of the dots as they went. Dr. Cowbum and Dr. Welland have demonstrated how a logic gate (the basic element of a microprocessor) could work in such a scheme. In their experiment, they fed a signal in at one end of the chain of dots and used a second signal to control whether it propagated along the chain.It is, admittedly, a long way from a single logic gate to a full microprocessor, but this was true also when the transistor was first invented. Dr. Cowburn, who is now searching for backers to help commercialise the technology, says he believes it will be at least ten years before the first magnetic microprocessor is constructed. But other researchers in the field agree that such a chip, is the next logical step. Dr. Prinz says that once magnetic memory is sorted out “the target is to go after the logic circuits.” Whether all-magnetic computers will ever be able to compete with other contenders that are jostling to knock electronics off its perch — such as optical, biological and quantum computing — remains to be seen. Dr. Cowburn suggests that the future lies with hybrid machines that use different technologies. But computing with magnetism evidently has an attraction all its own.In developing magnetic memory chips to replace the electronic ones, two alternative research paths are being pursued. These are approaches based on:
 ....
MCQ-> Instructions: Study the following information and answer the questions that follow. The premises of a bank are to be renovated. The renovation is in terms of flooring. Certain areas are to be floored either with marble or wood. All rooms/halls and pantry are rectangular. The area to be renovated comprises of a hall for customer transaction measuring 23 m x 29 m, branch manager's room measuring 13 m x 17 m, a pantry measuring 14 m x 13 m, a record keeping-cum-server room measuring 21 m x 13 m and locker area measuring 29 m x 21 m. The total area of the bank is 2000 square metres. The cost of wooden flooring is Rs.170 per square metre and the costs of marble flooring is Rs. 190 per square metre. The locker area, record keeping cum- server room and pantry are to be floored with marble. The branch manager's room and the hall for customer transaction are to be floored with wood. No other area is to be renovated in terms of flooring.What is the respective ratio of the total cost of wooden flooring to the total cost of marble flooring?
 ....
MCQ->Which one of the following is most likely used for measuring the rate of electron flow?....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions