1. Which one of the following sections performs better on the ductility criterion ?





Write Comment

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->“Better farming, Better Business and Better living is the essence of a Co-operation” is said by:....
QA->Which Committee recommended new criterion for determiningpoverty line?....
QA->What is ductility?....
QA->To make better, to improve or to lift to a better place....
QA->The lines "Act that one performs for own sake should also aim for the well being of others" are mentioned in....
MCQ->Which one of the following sections performs better on the ductility criterion ?....
MCQ-> Applicants for the doctoral programmes of Ambi Institute of Engineering (AIE) and Bambi Institute of Engineering (BIE) have to appear for a Common Entrance Test (CET). The test has three sections: Physics (P), Chemistry (C), and Maths (M). Among those appearing for CET, those at or above the 80th percentile in at least two sections, and at or above the 90th percentile overall, are selected for Advanced Entrance Test (AET) conducted by AIE. AET is used by AIE for final selection.For the 200 candidates who are at or above the 90th percentile overall based on CET, the following are known about their performance in CET: 1. No one is below the 80th percentile in all 3 sections. 2. 150 are at or above the 80th percentile in exactly two sections. 3. The number of candidates at or above the 80th percentile only in P is the same as the number of candidates at or above the 80th percentile only in C. The same is the number of candidates at or above the 80th percentile only in M. 4. Number of candidates below 80th percentile in P: Number of candidates below 80th percentile in C: Number of candidates below 80th percentile in M = 4:2:1.BIE uses a different process for selection. If any candidate is appearing in the AET by AIE, BIE considers their AET score for final selection provided the candidate is at or above the 80th percentile in P. Any other candidate at or above the 80th percentile in P in CET, but who is not eligible for the AET, is required to appear in a separate test to be conducted by BIE for being considered for final selection. Altogether, there are 400 candidates this year who are at or above the 80th percentile in P.What best can be concluded about the number of candidates sitting for the separate test for BIE who were at or above the 90th percentile overall in CET?
 ....
MCQ-> Read the passage carefully and answer the questions givenWill a day come when India’s poor can access government services as easily as drawing cash from an ATM? . . . [N]o country in the world has made accessing education or health or policing or dispute resolution as easy as an ATM, because the nature of these activities requires individuals to use their discretion in a positive way. Technology can certainly facilitate this in a variety of ways if it is seen as one part of an overall approach, but the evidence so far in education, for instance, is that just adding computers alone doesn’t make education any better. . . . The dangerous illusion of technology is that it can create stronger, top down accountability of service providers in implementation-intensive services within existing public sector organisations. One notion is that electronic management information systems (EMIS) keep better track of inputs and those aspects of personnel that are ‘EMIS visible’ can lead to better services. A recent study examined attempts to increase attendance of Auxiliary Nurse Midwife (ANMs) at clinics in Rajasthan, which involved high-tech time clocks to monitor attendance. The study’s title says it all: Band-Aids on a Corpse . . . e-governance can be just as bad as any other governance when the real issue is people and their motivation. For services to improve, the people providing the services have to want to do a better job with the skills they have. A study of medical care in Delhi found that even though providers, in the public sector had much better skills than private sector providers their provision of care in actual practice was much worse. In implementation-intensive services the key to success is face-to-face interactions between a teacher, a nurse, a policeman, an extension agent and a citizen. This relationship is about power. Amartya Sen’s . . . report on education in West Bengal had a supremely telling anecdote in which the villagers forced the teacher to attend school, but then, when the parents went off to work, the teacher did not teach, but forced the children to massage his feet. . . . As long as the system empowers providers over citizens, technology is irrelevant. The answer to successfully providing basic services is to create systems that provide both autonomy and accountability. In basic education for instance, the answer to poor teaching is not controlling teachers more . . . The key . . . is to hire teachers who want to teach and let them teach, expressing their professionalism and vocation as a teacher through autonomy in the classroom. This autonomy has to be matched with accountability for results—not just narrowly measured through test scores, but broadly for the quality of the education they provide. A recent study in Uttar Pradesh showed that if, somehow, all civil service teachers could be replaced with contract teachers, the state could save a billion dollars a year in revenue and double student learning. Just the additional autonomy and accountability of contracts through local groups—even without complementary system changes in information and empowerment—led to that much improvement. The first step to being part of the solution is to create performance information accessible to those outside of the government. . . .According to the author, service delivery in Indian education can be improved in all of the following ways EXCEPT through:
 ....
MCQ-> Read the following passage carefully and answer’ the questions. Certain words/phrases are given in bold to help you locate them while answering some of the questions.Since its creation in the 17th century, insurers have amassed policies in each class of risk they cover. Thanks to technology, insurers now have access to more and more information about the risks that individuals run. Car insurers have begun to set premiums based on how actual drivers behave, with “telematic” tracking devices to show how often they speed or slam, on the brakes. Analysts at Morgan Stanley, a bank, predict that damage to insured homes will fall by 4060% if smart sensors are installed to monitor, say, frayed electrical wiring. Some health insurers provide digital fitness bands to track policyholders’ vital signs— and give discounts if they lead a healthier life. But the data can °lily go so far. Even the safest driver can be hit by a falling tree; people in connected homes still fall off ladders, but the potential gains from smart insurance are  large. First, giving people better insights into how they are managing risk should help them change their behaviour for the better. Progressive, an American car insurer, tells customers who use its trackers where they tend to drive unsafely; they crash less often as a result. Second, pricing will become keener for consumers. The insurance industry made $338 billion in profits last year. More accurate risk assessment should result in lower premiums for many policyholders. Third, insurers should be able to spot fraud more easily, by using data to verify claims.But two worries stand out. One is a fear that insurers will go from being companies you hope never to deal with to ones that watch your every move. The other, thornier problem is that insurers will cherry pick the good risks, leaving some people without a safety net or to be taken care of by the state. Forgone privacy is the price the insured pay for receiving personalised pricing. Many people are indeed willing to share their data, but individuals should always have to opt in to do so. Some worry that this safeguard may not be enough; the financial costs of not sharing data may be so great that people have no real choice over whether to sign up. The second concern is the worry that more precise underwriting will create a class of uninsurable people, selected out of insurers’ businesses because they are too high a risk. For some types of cover, that would be a reasonable outcome. People who choose to drive like maniacs should have a hard time getting insurance. By the same token, it makes sense to offer rewards, in the form of discounts to premiums, to customers who behave well. Incentivising people to eat better, exercise regularly, drink in moderation and avoid smoking would reap huge health dividends. Where things get harder is with risks that individuals can not control. There are few things that people have less choice about than their genes. One option is to distort the market by requiring insurers to be blind to genetic data. In 2011, for example, Europe banned insurers from using gender to calculate annuities. Now that a man’s shorter lifespans are no longer taken into account that has led to lower payments. Until the interplay between nature and nurture is better understood, it is right to be cautious. Insurers should be able to take note of customers’ behaviour, but not exploit information from genetic testing. However, as data analysis and the understanding of genetics improve, that line will only become harder to hold.Which of the following can be said about the insurance industry ?
 ....
MCQ-> Read passage carefully. Answer the questions by selecting the most appropriate option (with reference to the passage). PASSAGE 4While majoring in computer science isn't a requirement to participate in the Second Machine Age, what skills do liberal arts graduates specifically possess to contribute to this brave new world? Another major oversight in the debate has been the failure to appreciate that a good liberal arts education teaches many skills that are not only valuable to the general world of business, but are in fact vital to innovating the next wave of breakthrough tech-driven products and services. Many defenses of the value of a liberal arts education have been launched, of course, with the emphasis being on the acquisition of fundamental thinking and communication skills, such as critical thinking, logical argumentation, and good communication skills. One aspect of liberal arts education that has been strangely neglected in the discussion is the fact that the humanities and social sciences are devoted to the study of human nature and the nature of our communities and larger societies. Students who pursue degrees in the liberal arts disciplines tend to be particularly motivated to investigate what makes us human: how we behave and why we behave as we do. They're driven to explore how our families and our public institutions-such as our schools and legal systems-operate, and could operate better, and how governments and economies work, or as is so often the case, are plagued by dysfunction. These students learn a great deal from their particular courses of study and apply that knowledge to today's issues, the leading problems to be tackled, and various approaches for analyzing and addressing those problems. The greatest opportunities for innovation in the emerging era are in applying evolving technological capabilities to finding better ways to solve human problems like social dysfunction and political corruption; finding ways to better educate children; helping people live healthier and happier lives by altering harmful behaviors; improving our working conditions; discovering better ways to tackle poverty; Improving healthcare and making it more affordable; making our governments more accountable, from the local level up to that of global affairs; and finding optimal ways to incorporate intelligent, nimble machines into our work lives so that we are empowered to do more of the work that we do best, and to let the machines do the rest. Workers with a solid liberal arts education have a strong foundation to build on in pursuing these goals. One of the most immediate needs in technology innovation is to invest products and services with more human qualities. with more sensitivity to human needs and desires. Companies and entrepreneurs that want to succeed today and in the future must learn to consider in all aspects of their product and service creation how they can make use of the new technologies to make them more humane. Still, many other liberal arts disciplines also have much to provide the world of technological innovation. The study of psychology, for example, can help people build products that are more attuned to our emotions and ways of thinking. Experience in Anthropology can additionally help companies understand cultural and individual behavioural factors that should be considered in developing products and in marketing them. As technology allows for more machine intelligence and our lives become increasingly populated by the Internet of things and as the gathering of data about our lives and analysis of it allows for more discoveries about our behaviour, consideration of how new products and services can be crafted for the optimal enhancement of our lives and the nature of our communities, workplaces and governments will be of vital importance. Those products and services developed with the keeneSt sense of how they' can serve our human needs and complement our human talents will have a distinct competitive advantage. Much of the criticism of the liberal arts is based on the false assumption that liberal arts students lack rigor in comparison to those participating in the STEM disciplines and that they are 'soft' and unscientific whereas those who study STEM fields learn the scientific method. In fact the liberal arts teach many methods of rigorous inquiry and analysis, such as close observation and interviewing in ways that hard science adherents don't always appreciate. Many fields have long incorporated the scientific method and other types of data driven scientific inquiry and problem solving. Sociologists have developed sophisticated mathematical models of societal networks. Historians gather voluminous data on centuries-old household expenses, marriage and divorce rates, and the world trade, and use data to conduct statistical analyses, identifying trends and contributing factors to the phenomena they are studying. Linguists have developed high-tech models of the evolution of language, and they've made crucial contributions to the development of one of the technologies behind the rapid advance of automation- natural language processing, whereby computers are able to communicate with the, accuracy and personality of Siri and Alexa. It's also important to debunk the fallacy that liberal arts students who don't study these quantitative analytical methods have no 'hard' or relevant skills. This gets us back to the arguments about the fundamental ways of thinking, inquiring, problem solving and communicating that a liberal arts education teaches.What is the central theme of the passage?
 ....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions