1. The distance measured along one rivet line from the centre of a rivet to the centre of adjoining rivet on an adjacent parallel rivet line, is called






Write Comment

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->In which Molecule the distance between two adjacent carbon atoms is longest?....
QA->Astronomical Distance is measured in....
QA->How many image will be formed if two mirrors are fitted adjacent walls and one mirror on ceiling?....
QA->A car which runs along a straight level road at a speed of 36km/hour is brought to rest in 2 seconds by applying the brakes. The stopping distance is :....
QA->When it is noon along 82° 30’ longitude; along what degree of longitude it will be 30 a.m.?....
MCQ->The distance measured along one rivet line from the centre of a rivet to the centre of adjoining rivet on an adjacent parallel rivet line, is called....
MCQ-> On the basis of the information provided, answer the questions below.Six friends Ana, Belle, Cinderella, Diana, Elsa and Ferida are sitting on the ground in a hexagonal shape discussing their trades i.e. cook, hairdresser, washerwoman, tailor, carpenter and plumber. All the sides of the hexagon are of the same length. The seating arrangement is subject to following conditions.1.Ana is not adjacent to the hairdresser or Cinderella 2.The tailor is not adjacent to Cinderella or Elsa but adjacent to Ana. 3.Hairdresser and Cinderella are adjacent to each other. 4.Plumber is in the middle of tailor and Cinderella in a clockwise direction. 5.Cook is adjacent to the Carpenter who is adjacent to Belle in an anti-clockwise direction. 6.Ferida is a plumber and Elsa is adjacent the cook. 7.In a clockwise direction, the washerwoman is followed by the hairdresserWho is at the same distance from Diana as carpenter is from Diana?
 ....
MCQ-> You are given an n×n square matrix to be filled with numerals so that no two adjacent cells have the same numeral. Two cells are called adjacent if they touch each other horizontally, vertically or diagonally. So a cell in one of the four corners has three cells adjacent to it, and a cell in the first or last row or column which is not in the corner has five cells adjacent to it. Any other cell has eight cells adjacent to it.What is the minimum number of different numerals needed to fill a 3×3 square matrix?
 ....
MCQ-> Cells are the ultimate multi-taskers: they can switch on genes and carry out their orders, talk to each other, divide in two, and much more, all at the same time. But they couldn’t do any of these tricks without a power source to generate movement. The inside of a cell bustles with more traffic than Delhi roads, and, like all vehicles, the cell’s moving parts need engines. Physicists and biologists have looked ‘under the hood’ of the cell and laid out the nuts and bolts of molecular engines.The ability of such engines to convert chemical energy into motion is the envy nanotechnology researchers looking for ways to power molecule-sized devices. Medical researchers also want to understand how these engines work. Because these molecules are essential for cell division, scientists hope to shut down the rampant growth of cancer cells by deactivating certain motors. Improving motor-driven transport in nerve cells may also be helpful for treating diseases such as Alzheimer’s, Parkinson’s or ALS, also known as Lou Gehrig’s disease.We wouldn’t make it far in life without motor proteins. Our muscles wouldn’t contract. We couldn’t grow, because the growth process requires cells to duplicate their machinery and pull the copies apart. And our genes would be silent without the services of messenger RNA, which carries genetic instructions over to the cell’s protein-making factories. The movements that make these cellular activities possible occur along a complex network of threadlike fibers, or polymers, along which bundles of molecules travel like trams. The engines that power the cell’s freight are three families of proteins, called myosin, kinesin and dynein. For fuel, these proteins burn molecules of ATP, which cells make when they break down the carbohydrates and fats from the foods we eat. The energy from burning ATP causes changes in the proteins’ shape that allow them to heave themselves along the polymer track. The results are impressive: In one second, these molecules can travel between 50 and 100 times their own diameter. If a car with a five-foot-wide engine were as efficient, it would travel 170 to 340 kilometres per hour.Ronald Vale, a researcher at the Howard Hughes Medical Institute and the University of California at San Francisco, and Ronald Milligan of the Scripps Research Institute have realized a long-awaited goal by reconstructing the process by which myosin and kinesin move, almost down to the atom. The dynein motor, on the other hand, is still poorly understood. Myosin molecules, best known for their role in muscle contraction, form chains that lie between filaments of another protein called actin. Each myosin molecule has a tiny head that pokes out from the chain like oars from a canoe. Just as rowers propel their boat by stroking their oars through the water, the myosin molecules stick their heads into the actin and hoist themselves forward along the filament. While myosin moves along in short strokes, its cousin kinesin walks steadily along a different type of filament called a microtubule. Instead of using a projecting head as a lever, kinesin walks on two ‘legs’. Based on these differences, researchers used to think that myosin and kinesin were virtually unrelated. But newly discovered similarities in the motors’ ATP-processing machinery now suggest that they share a common ancestor — molecule. At this point, scientists can only speculate as to what type of primitive cell-like structure this ancestor occupied as it learned to burn ATP and use the energy to change shape. “We’ll never really know, because we can’t dig up the remains of ancient proteins, but that was probably a big evolutionary leap,” says Vale.On a slightly larger scale, loner cells like sperm or infectious bacteria are prime movers that resolutely push their way through to other cells. As L. Mahadevan and Paul Matsudaira of the Massachusetts Institute of Technology explain, the engines in this case are springs or ratchets that are clusters of molecules, rather than single proteins like myosin and kinesin. Researchers don’t yet fully understand these engines’ fueling process or the details of how they move, but the result is a force to be reckoned with. For example, one such engine is a spring-like stalk connecting a single-celled organism called a vorticellid to the leaf fragment it calls home. When exposed to calcium, the spring contracts, yanking the vorticellid down at speeds approaching three inches (eight centimetres) per second.Springs like this are coiled bundles of filaments that expand or contract in response to chemical cues. A wave of positively charged calcium ions, for example, neutralizes the negative charges that keep the filaments extended. Some sperm use spring-like engines made of actin filaments to shoot out a barb that penetrates the layers that surround an egg. And certain viruses use a similar apparatus to shoot their DNA into the host’s cell. Ratchets are also useful for moving whole cells, including some other sperm and pathogens. These engines are filaments that simply grow at one end, attracting chemical building blocks from nearby. Because the other end is anchored in place, the growing end pushes against any barrier that gets in its way.Both springs and ratchets are made up of small units that each move just slightly, but collectively produce a powerful movement. Ultimately, Mahadevan and Matsudaira hope to better understand just how these particles create an effect that seems to be so much more than the sum of its parts. Might such an understanding provide inspiration for ways to power artificial nano-sized devices in the future? “The short answer is absolutely,” says Mahadevan. “Biology has had a lot more time to evolve enormous richness in design for different organisms. Hopefully, studying these structures will not only improve our understanding of the biological world, it will also enable us to copy them, take apart their components and recreate them for other purpose.”According to the author, research on the power source of movement in cells can contribute to
 ....
MCQ-> Study the following information carefully and answer the questions given below:Eight friends P, Q, R, S, W, X, Y and Z are sitting around a circular table but not necessarily in the same order. Some of them are facing the centre and some others are facing outside (i.e. in a direction opposite to the centre.) Note :(i) Facing the same direction means if one person faces the centre then the other also faces the centre and vice-versa. (ii) Facing the opposite directions means if one person faces the centre then the other faces outside and vice-versa. (iii) Immediate neighbours facing the same direction means if one person faces the centre then the other also faces the centre and vice-versa. (iv) Immediate neighbours facing the opposite directions means if one person faces the centre then the other faces outside and vice-versa. • R sits second to the right of Y. Only two persons sit between R and W. • P sits to the immediate right of W. W faces outside. • Only one person sits between P and Z. Immediate neighbours of P face opposite directions. • Q sits third to the left of Z. Q is not an immediate neighbour of P. • X faces a direction opposite to that of Y. X is an immediate neighbour of neither Y nor P. • Immediate neighbours of S face same direction. P does not face outside. • R and Q face a direction opposite to that of S.Four of the following five are alike in a certain way based on the direction they are facing and so form a group. Which is the one that does not belong to that group?
 ....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions