1. In the vibrational spectrum of ‘CO_2’the number of fundamental vibrational modes common in both infrared and Raman are





Write Comment

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->The director of Central Bureau of Investigation (CBI) who has been removed by the Supreme Court from the 2G spectrum case, saying he had attempted to help the accused in the spectrum scam and derail the investigation?....
QA->Name of the rogue planet which has been discovered by the Canada-France Brown Dwarfs Survey, a near infrared sky survey?....
QA->WHO DISCOVERED INFRARED RAYS....
QA->In a club 70% members read English news papers and 75% members read Malayalam news papers, while 20% do not read both papers. If 325 members read both the news papers, then the total numbers in the club is .........?....
QA->Which was common both to the Harappan society and the Rigvedic society?....
MCQ->In the vibrational spectrum of ‘CO_2’the number of fundamental vibrational modes common in both infrared and Raman are....
MCQ-> Read the following passage carefully and answer the question given below it.Certain words/phrase have-been printed in the bold to help you locate them while answering some of the questions. King Hutamasan felt he had everything in the world not only due to his riches and his noble knights but because of his beautiful queen Rani Matsya The rays of the sun were put to shame with the iridescent light that Matsya illuminated with her beauty and brains At the right hand of the king she was known to sit and aid him in all his judicial probes You could not escape her deep-set eyes when you committed a crime as she always knew the and the culprit Her generosity preceded her reputation in the kingdom and her hands were always full to give people in the kingdom revered her because if she passed by she always gave to the compassionate and poor Far away from the kingly palace lived a man named Raman with only ends to his poverty as he had lost all his land to the landlord,His age enabled him little towards manual labour and so begging was the only alternative to salvage his wife and children Every morning he went door to door for some work food or money.The kindness of people always got him enough to take home But Raman was a little self centered His world began with him first followed by his family and the rest So he would eat and drink to his delight and return home with whatever he found excess This routine followed and he never let anyone discover his interest as he always put on a long face when he reached home. One day as he was relishing the bowl of rice he had just received from a humble home he heard that Rani Matsya was to pass from the very place he was standing Her generosity had reached his ears and he knew if he pulled a long face and showed how poor he was she would hand him a bag full of gold coins enough for the rest of his life enough to buy food and supplies for his family.He thought he could keep some coins for himself and only reveal a few to his wife so he can fulfill his own wishes. He ran to the chariot of the Rani and begged her soldiers to allow him to speak to the queen Listening to the arguments outside Rani Matsya opened the curtains of her chariot and asked Raman what he wanted Raman went on his knees and praised the queen I have heard you are most generous and most chaste show this beggar some charity Rani narrowed her brows and asked Raman what he could give her in return Surprised by such a question Raman looked at his bowl full of rice With spite in him he just picked up a few grains of rice and gave it to the queen Rani Matsya counted the 5 grains and looked at his bowl full of rice and said you shall be given what is due to you Saying this the chariot galloped away Raman abused her under his breath This he never thought would happen How could she ask him for something in return when she hadn’t given him anything ? Irked with anger he stormed home and gave his wife the bowl of rice Just then he saw a sack at the enterence His wife said some men had come and kept it there He opened it to find it full of rice He put his hand inside and caught hold of a hard metal only to discover it was a gold coin Elated he upturned the sack to find 5 gold coins in exact for the five rice grains If only I had given my entire bowl thought Raman I would have had a sack full of gold.According to the passage which of the following is definitely true about Rani Matsya ? (A)She was beautiful (B)She was intelligent (C)She was kind....
MCQ->Read the following statements and answer the question that follows:An in-depth exploration of the Indian case and case studies of early adopters of mobile technology will provide spectrum managers a pragmatic and modern approach whereby they could utilize their resources efficiently and optimally. Even as spectrum management regimes are moving from a command and control regime to a flexible use regime, new technological developments are suggesting that there are significant opportunities in managing large swathes of spectrum as a common property resource, in addition to flexible use. Political legacies and market realities in different regimes pose unique challenges for spectrum managers who must negotiate a tricky path to the land promised by technological possibility. On the other hand, supply of spectrum is restricted due to competing nature of uses and vested interests of incumbent holders. The demand for spectrum has never been so acute as today's communication services extend beyond simple voice to complex data and video, augmented by evolving technologies such as peer-to-peer sharing, social networking, Fourth and Fifth Generation networks, Big Data, and cloud computing.Rank the above five statements so as to make it a logical sequence:....
MCQ-> The current debate on intellectual property rights (IPRs) raises a number of important issues concerning the strategy and policies for building a more dynamic national agricultural research system, the relative roles of public and private sectors, and the role of agribusiness multinational corporations (MNCs). This debate has been stimulated by the international agreement on Trade Related Intellectual Property Rights (TRIPs), negotiated as part of the Uruguay Round. TRIPs, for the first time, seeks to bring innovations in agricultural technology under a new worldwide IPR regime. The agribusiness MNCs (along with pharmaceutical companies) played a leading part in lobbying for such a regime during the Uruguay Round negotiations. The argument was that incentives are necessary to stimulate innovations, and that this calls for a system of patents which gives innovators the sole right to use (or sell/lease the right to use) their innovations for a specified period and protects them against unauthorised copying or use. With strong support of their national governments, they were influential in shaping the agreement on TRIPs, which eventually emerged from the Uruguay Round. The current debate on TRIPs in India - as indeed elsewhere - echoes wider concerns about ‘privatisation’ of research and allowing a free field for MNCs in the sphere of biotechnology and agriculture. The agribusiness corporations, and those with unbounded faith in the power of science to overcome all likely problems, point to the vast potential that new technology holds for solving the problems of hunger, malnutrition and poverty in the world. The exploitation of this potential should be encouraged and this is best done by the private sector for which patents are essential. Some, who do not necessarily accept this optimism, argue that fears of MNC domination are exaggerated and that farmers will accept their products only if they decisively outperform the available alternatives. Those who argue against agreeing to introduce an IPR regime in agriculture and encouraging private sector research are apprehensive that this will work to the disadvantage of farmers by making them more and more dependent on monopolistic MNCs. A different, though related apprehension is that extensive use of hybrids and genetically engineered new varieties might increase the vulnerability of agriculture to outbreaks of pests and diseases. The larger, longer-term consequences of reduced biodiversity that may follow from the use of specially bred varieties are also another cause for concern. Moreover, corporations, driven by the profit motive, will necessarily tend to underplay, if not ignore, potential adverse consequences, especially those which are unknown and which may manifest themselves only over a relatively long period. On the other hand, high-pressure advertising and aggressive sales campaigns by private companies can seduce farmers into accepting varieties without being aware of potential adverse effects and the possibility of disastrous consequences for their livelihood if these varieties happen to fail. There is no provision under the laws, as they now exist, for compensating users against such eventualities. Excessive preoccupation with seeds and seed material has obscured other important issues involved in reviewing the research policy. We need to remind ourselves that improved varieties by themselves are not sufficient for sustained growth of yields. in our own experience, some of the early high yielding varieties (HYVs) of rice and wheat were found susceptible to widespread pest attacks; and some had problems of grain quality. Further research was necessary to solve these problems. This largely successful research was almost entirely done in public research institutions. Of course, it could in principle have been done by private companies, but whether they choose to do so depends crucially on the extent of the loss in market for their original introductions on account of the above factors and whether the companies are financially strong enough to absorb the ‘losses’, invest in research to correct the deficiencies and recover the lost market. Public research, which is not driven by profit, is better placed to take corrective action. Research for improving common pool resource management, maintaining ecological health and ensuring sustainability is both critical and also demanding in terms of technological challenge and resource requirements. As such research is crucial to the impact of new varieties, chemicals and equipment in the farmer’s field, private companies should be interested in such research. But their primary interest is in the sale of seed materials, chemicals, equipment and other inputs produced by them. Knowledge and techniques for resource management are not ‘marketable’ in the same way as those inputs. Their application to land, water and forests has a long gestation and their efficacy depends on resolving difficult problems such as designing institutions for proper and equitable management of common pool resources. Public or quasi-public research institutions informed by broader, long-term concerns can only do such work. The public sector must therefore continue to play a major role in the national research system. It is both wrong and misleading to pose the problem in terms of public sector versus private sector or of privatisation of research. We need to address problems likely to arise on account of the public-private sector complementarity, and ensure that the public research system performs efficiently. Complementarity between various elements of research raises several issues in implementing an IPR regime. Private companies do not produce new varieties and inputs entirely as a result of their own research. Almost all technological improvement is based on knowledge and experience accumulated from the past, and the results of basic and applied research in public and quasi-public institutions (universities, research organisations). Moreover, as is increasingly recognised, accumulated stock of knowledge does not reside only in the scientific community and its academic publications, but is also widely diffused in traditions and folk knowledge of local communities all over. The deciphering of the structure and functioning of DNA forms the basis of much of modern biotechnology. But this fundamental breakthrough is a ‘public good’ freely accessible in the public domain and usable free of any charge. Various techniques developed using that knowledge can however be, and are, patented for private profit. Similarly, private corporations draw extensively, and without any charge, on germplasm available in varieties of plants species (neem and turmeric are by now famous examples). Publicly funded gene banks as well as new varieties bred by public sector research stations can also be used freely by private enterprises for developing their own varieties and seek patent protection for them. Should private breeders be allowed free use of basic scientific discoveries? Should the repositories of traditional knowledge and germplasm be collected which are maintained and improved by publicly funded organisations? Or should users be made to pay for such use? If they are to pay, what should be the basis of compensation? Should the compensation be for individuals or (or communities/institutions to which they belong? Should individual institutions be given the right of patenting their innovations? These are some of the important issues that deserve more attention than they now get and need serious detailed study to evolve reasonably satisfactory, fair and workable solutions. Finally, the tendency to equate the public sector with the government is wrong. The public space is much wider than government departments and includes co- operatives, universities, public trusts and a variety of non-governmental organisations (NGOs). Giving greater autonomy to research organisations from government control and giving non- government public institutions the space and resources to play a larger, more effective role in research, is therefore an issue of direct relevance in restructuring the public research system.Which one of the following statements describes an important issue, or important issues, not being raised in the context of the current debate on IPRs?
 ....
MCQ-> Study the following graph and answer the questions that follow France, South Africa, Australia, Ukraine and Poland form an energy consortium which declares $$CO_2$$ emission of 350 million ton per annum as standard benchmark. The energy consortium decides to sell their carbon emission savings against the standard benchmark to high carbon emission countries. It is expected that the per capita income of each country of the energy consortium increases by 2%, 2.5% and 3.5% p.a. for the next three years respectively. The ratio of $$CO_2$$ emission to per capita income of the each energy consortium country reduces by 50% and remains constant for the next three years. By selling 0.5 $$CO_2$$ emissions [million ton] the energy consortium earns 1.25 carbon credits, then determine the total carbon credits earned by energy consortium in three years.
 ....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions