1. Which thermodynamic law provide the basis of temperature measurement?





Write Comment

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->Which thermodynamic law provides the basis of temperature measurement?....
QA->For the measurement of temperature of the order of 400°C; what will we prefer?....
QA->For the measurement of temperature of the order of 400°C, what will we prefer?....
QA->Name of the bill aims to provide subsidized food grains to approximately two thirds of India"s 2 billion people which was signed into law on September 12, 2013?....
QA->A temperature difference of 25°C is equivalent to a temperature difference of how many F?....
MCQ-> Read the following passage carefully and answer the questions given at the end.Passage 4Public sector banks (PSBs) are pulling back on credit disbursement to lower rated companies, as they keep a closer watch on using their own scarce capital and the banking regulator heightens its scrutiny on loans being sanctioned. Bankers say the Reserve Bank of India has started strictly monitoring how banks are utilizing their capital. Any big-ticket loan to lower rated companies is being questioned. Almost all large public sector banks that reported their first quarter results so far have showed a contraction in credit disbursal on a year-to-date basis, as most banks have shifted to a strategy of lending largely to government-owned "Navratna" companies and highly rated private sector companies. On a sequential basis too, banks have grown their loan book at an anaemic rate.To be sure, in the first quarter, loan demand is not quite robust. However, in the first quarter last year, banks had healthier loan growth on a sequential basis than this year. The country's largest lender State Bank of India grew its loan book at only 1.21% quarter-on-quarter. Meanwhile, Bank of Baroda and Punjab National Bank shrank their loan book by 1.97% and 0.66% respectively in the first quarter on a sequential basis.Last year, State Bank of India had seen sequential loan growth of 3.37%, while Bank of Baroda had seen a smaller contraction of 0.22%. Punjab National Bank had seen a growth of 0.46% in loan book between the January-March and April-June quarters last year. On a year-to-date basis, SBI's credit growth fell more than 2%, Bank of Baroda's credit growth contracted 4.71% and Bank of India's credit growth shrank about 3%. SBI chief Arundhati Bhattacharya said the bank's year-to-date credit growth fell as the bank focused on ‘A’ rated customers. About 90% of the loans in the quarter were given to high-rated companies. "Part of this was a conscious decision and part of it is because we actually did not get good fresh proposals in the quarter," Bhattacharya said.According to bankers, while part of the credit contraction is due to the economic slowdown, capital constraints and reluctance to take on excessive risk has also played a role. "Most of the PSU banks are facing pressure on capital adequacy. It is challenging to maintain 9% core capital adequacy. The pressure on monitoring capital adequacy and maintaining capital buffer is so strict that you cannot grow aggressively," said Rupa Rege Nitsure, chief economist at Bank of Baroda.Nitsure said capital conservation pressures will substantially cut down "irrational expansion of loans" in some smaller banks, which used to grow at a rate much higher than the industry average. The companies coming to banks, in turn, will have to make themselves more creditworthy for banks to lend. "The conservation of capital is going to inculcate a lot of discipline in both banks and borrowers," she said.For every loan that a bank disburses, some amount of money is required to be set aside as provision. Lower the credit rating of the company, riskier the loan is perceived to be. Thus, the bank is required to set aside more capital for a lower rated company than what it otherwise would do for a higher rated client. New international accounting norms, known as Basel III norms, require banks to maintain higher capital and higher liquidity. They also require a bank to set aside "buffer" capital to meet contingencies. As per the norms, a bank's total capital adequacy ratio should be 12% at any time, in which tier-I, or the core capital, should be at 9%. Capital adequacy is calculated by dividing total capital by risk-weighted assets. If the loans have been given to lower rated companies, risk weight goes up and capital adequacy falls.According to bankers, all loan decisions are now being assessed on the basis of the capital that needs to be set aside as provision against the loan and as a result, loans to lower rated companies are being avoided. According to a senior banker with a public sector bank, the capital adequacy situation is so precarious in some banks that if the risk weight increases a few basis points, the proposal gets cancelled. The banker did not wish to be named. One basis point is one hundredth of a percentage point. Bankers add that the Reserve Bank of India has also started strictly monitoring how banks are utilising their capital. Any big-ticket loan to lower rated companies is being questioned.In this scenario, banks are looking for safe bets, even if it means that profitability is being compromised. "About 25% of our loans this quarter was given to Navratna companies, who pay at base rate. This resulted in contraction of our net interest margin (NIM)," said Bank of India chairperson V.R. Iyer, while discussing the bank's first quarter results with the media. Bank of India's NIM, or the difference between yields on advances and cost of deposits, a key gauge of profitability, fell in the first quarter to 2.45% from 3.07% a year ago, as the bank focused on lending to highly rated customers.Analysts, however, say the strategy being followed by banks is short-sighted. "A high rated client will take loans at base rate and will not give any fee income to a bank. A bank will never be profitable that way. Besides, there are only so many PSU companies to chase. All banks cannot be chasing them all at a time. Fact is, the banks are badly hit by NPA and are afraid to lend now to big projects. They need capital, true, but they have become risk-averse," said a senior analyst with a local brokerage who did not wish to be named.Various estimates suggest that Indian banks would require more than Rs. 2 trillion of additional capital to have this kind of capital adequacy ratio by 2019. The central government, which owns the majority share of these banks, has been cutting down on its commitment to recapitalize the banks. In 2013-14, the government infused Rs. 14,000 crore in its banks. However, in 2014-15, the government will infuse just Rs. 11,200 crore.Which of the following statements is correct according to the passage?
 ....
MCQ-> Read the following passage carefully and answer the questions given below it. Certain words/phrases have been given in bold to help you locate them while answering some of the questions: In every religion, culture and civilization feeding the poor and hungry is considered one of the most noble deeds. However such large scale feeding will require huge investment both in resources and time. A better alternative is to create conditions by which proper wholesome food is available to all the rural poor at affordable price. Getting this done will be the biggest charity.Our work with the rural poor in villages of Western Maharashtra has shown that most of these people are landless laborers. After working the whole day in the fields in scorching sun they come home in the evening and have to cook for the whole family. The cooking is done on the most primitive chulha (wood stove) which results in tremendous indoor air pollution. Many of them also have no electricity so they use primitive and polluting kerosene lamps. World Health Organization (WHO) data has shown that about 300,000 deaths/ year in India can be directly attributed to indoor air pollution in such -nuts. At the same time this pollution results in many respiratory ailments and these people spend close Rs. 200-400 per month on medical bills. Besides the pollution, rural poor also eat very poor diet. They eat  whatever is available daily at Public Distribution System (PDS) shops and most of the times these shops are out of rations. Thus they cook whatever is available. The hard work together with poor eating takes a heavy toll on their health. Besides this malnutrition also affects the physical and mental health of their children and may lead to creation of a whole generation of mentally challenged citizens. So I feel that the best way to provide adequate food for rural poor is by setting up rural restaurants on large scale. These restaurants will be similar to regular ones but for people below poverty line (BPL) they will provide meals at subsidized rates. These citizens will pay only Rs. 10 per meal and the rest, which is expected to be quite small, will come as a part of Government subsidy. With existing open market prices of vegetables and groceries average cost of simple meal for a family of four comes to Rs. 50 per meal or Rs. 12.50 per person per meal. If the PDS prices are taken for the groceries then the average cost will be Rs. 7.50 per person per meal. This makes the subsidy approximately Rs. 2.50 per person per meal only and hence quite small. The buying of meals could be by the use of UID (Aadhar) card by rural poor. The total cost should be Rs. 30 per day for three vegetarian meals of breakfast, lunch and dinner. The rural poor will get better nutrition and tasty food by eating  in these restaurants. Besides the time saved can be used for resting and other gainful activities like teaching children. Since the food will not be cooked in huts, this strategy will result in less pollution in rural households. This will be beneficial for their health. Besides, women's chores will be reduced drastically. Another advantage of eating in these restaurants will be increased social interaction of rural poor since this could also become a meeting place. Eating in restaurants will also require fewer utensils in house and hence less expenditure. For other things like hot water for bath, making tea, boiling milk and cooking on holidays some utensils and fuel will be required. Our Institute NARI has developed an extremely efficient and environment-friendly stove which provides simultaneously both light and heat for cooking and hence may provide the necessary functions. Providing reasonably priced wholesome food is the basic aim and program of Government of India (GOI). This is the basis of their much touted food security  program.However in 65years they have not been able to do so. Thus I feel a public private partnership can help in this. To help the restaurant owners the GOI or state Governments should provide them with soft loans and other line of credit for setting up such facilities. Corporate world can take this up as a part of their corporate social responsibility activity. Their participation will help ensure good quality restaurants and services. Besides the charitable work, this will also make good business sense. McDonald's-type restaurant systems for rural areas can be a good model to be set up for quality control both in terms of hygiene and in terms of quality of food material. However focus will be on availability of wholesome simple vegetarian food in these restaurants.More clientele (volumes) will make these restaurants economical. Existing models of dhabas, udipi type restaurants etc. can be used in this scheme. These restaurants may also be able to provide midday meals in rural schools. At present the midday meal program is faltering due to various reasons. Food coupons in western countries provide cheap food for poor. However quite a number of fast food restaurants in US do not accept them. Besides these coupons are most of the times used for non-food items, it will be mandatory for rural restaurants to accept payment via UID cards for BPL citizens. Existing soup kitchens, lagers and temple food are based on charity. For large scale rural use it should be based on good social enterprise  business model. Cooking food in these restaurants will also result in much more efficient use of energy since energy/ kg of food cooked in households is greater than that in restaurants. The main thing however will be to reduce drastically the food wastage In these restaurants. Rural restaurants can also be forced to use clean fuels like LPG or locally produced biomass-based liquid fuels. This strategy is very difficult to enforce for individual households. Large scale employment generation in rural areas may result because of this activity. With an average norm of 30 people employed/ 100-chair restaurant, this program has the potential of generating about 20 million jobs permanently in rural areas. Besides the infrastructure development in setting up restaurants and establishing the food chain etc will help the local farmers and will create huge wealth generation in these areas. In the long run this strategy may provide better food security for rural poor than the existing one which is based on cheap food availability in PDS - a system which is prone to corruption and leakage.In accordance with the view expressed by the writer of this article, what is the biggest charity ?
 ....
MCQ-> Analyse the following passage and provide appropriate answers for the questions that follow: Each piece, or part, of the whole of nature is always merely an approximation to the complete truth, or the complete truth so far as we know it. In fact, everything we know is only some kind of approximation, because we know that we do not know all the laws as yet. Therefore, things must be learned only to be unlearned again or, more likely, to be corrected. The principal of science, the definition, almost, is the following: The test of all knowledge is experiment. Experiment is the sole judge of scientific “truth.” But what is the source of knowledge? Where do the laws that are to be tested come from? Experiment, itself, helps to produce these laws, in the sense that it gives us hints. But also needed is imagination to create from these laws, in the sense that it gives us hints. But also needed is imagination to create from these hints the great generalizations – to guess at the wonderful, simple, but very strange patterns beneath them all, and then to experiment to check again whether we have made the right guess. This imagining process is so difficult that there is a division of labour in physics: there are theoretical physicists who imagine, deduce, and guess at new laws, but do not experiment; and then there are experimental physicists who experiment, imagine, deduce, and guess. We said that the laws of nature are approximate: that we first find the “wrong” ones, and then we find the “right” ones. Now, how can an experiment be “wrong”? First, in a trivial way: the apparatus can be faulty and you did not notice. But these things are easily fixed and checked back and forth. So without snatching at such minor things, how can the results of an experiment be wrong? Only by being inaccurate. For example, the mass of an object never seems to change; a spinning top has the same weight as a still one. So a “law” was invented: mass is constant, independent of speed. That “law” is now found to be incorrect. Mass is found is to increase with velocity, but appreciable increase requires velocities near that of light. A true law is: if an object moves with a speed of less than one hundred miles a second the mass is constant to within one part in a million. In some such approximate form this is a correct law. So in practice one might think that the new law makes no significant difference. Well, yes and no. For ordinary speeds we can certainly forget it and use the simple constant mass law as a good approximation. But for high speeds we are wrong, and the higher the speed, the wrong we are. Finally, and most interesting, philosophically we are completely wrong with the approximate law. Our entire picture of the world has to be altered even though the mass changes only by a little bit. This is a very peculiar thing about the philosophy, or the ideas, behind the laws. Even a very small effect sometimes requires profound changes to our ideas.Which of the following options is DEFINITLY NOT an approximation to the complete truth?
 ....
MCQ->Which thermodynamic law provide the basis of temperature measurement?....
MCQ-> Modern science, exclusive of geometry, is a comparatively recent creation and can be said to have originated with Galileo and Newton. Galileo was the first scientist to recognize clearly that the only way to further our understanding of the physical world was to resort to experiment. However obvious Galileo’s contention may appear in the light of our present knowledge, it remains a fact that the Greeks, in spite of their proficiency in geometry, never seem to have realized the importance of experiment. To a certain extent this may be attributed to the crudeness of their instruments of measurement. Still an excuse of this sort can scarcely be put forward when the elementary nature of Galileo’s experiments and observations is recalled. Watching a lamp oscillate in the cathedral of Pisa, dropping bodies from the leaning tower of Pisa, rolling balls down inclined planes, noticing the magnifying effect of water in a spherical glass vase, such was the nature of Galileo’s experiments and observations. As can be seen, they might just as well have been performed by the Greeks. At any rate, it was thanks to such experiments that Galileo discovered the fundamental law of dynamics, according to which the acceleration imparted to a body is proportional to the force acting upon it.The next advance was due to Newton, the greatest scientist of all time if account be taken of his joint contributions to mathematics and physics. As a physicist, he was of course an ardent adherent of the empirical method, but his greatest title to fame lies in another direction. Prior to Newton, mathematics, chiefly in the form of geometry, had been studied as a fine art without any view to its physical applications other than in very trivial cases. But with Newton all the resources of mathematics were turned to advantage in the solution of physical problems. Thenceforth mathematics appeared as an instrument of discovery, the most powerful one known to man, multiplying the power of thought just as in the mechanical domain the lever multiplied our physical action. It is this application of mathematics to the solution of physical problems, this combination of two separate fields of investigation, which constitutes the essential characteristic of the Newtonian method. Thus problems of physics were metamorphosed into problems of mathematics.But in Newton’s day the mathematical instrument was still in a very backward state of development. In this field again Newton showed the mark of genius by inventing the integral calculus. As a result of this remarkable discovery, problems, which would have baffled Archimedes, were solved with ease. We know that in Newton’s hands this new departure in scientific method led to the discovery of the law of gravitation. But here again the real significance of Newton’s achievement lay not so much in the exact quantitative formulation of the law of attraction, as in his having established the presence of law and order at least in one important realm of nature, namely, in the motions of heavenly bodies. Nature thus exhibited rationality and was not mere blind chaos and uncertainty. To be sure, Newton’s investigations had been concerned with but a small group of natural phenomena, but it appeared unlikely that this mathematical law and order should turn out to be restricted to certain special phenomena; and the feeling was general that all the physical processes of nature would prove to be unfolding themselves according to rigorous mathematical laws.When Einstein, in 1905, published his celebrated paper on the electrodynamics of moving bodies, he remarked that the difficulties, which surrouned the equations of electrodynamics, together with the negative experiments of Michelson and others, would be obviated if we extended the validity of the Newtonian principle of the relativity of Galilean motion, which applies solely to mechanical phenomena, so as to include all manner of phenomena: electrodynamics, optical etc. When extended in this way the Newtonian principle of relativity became Einstein’s special principle of relativity. Its significance lay in its assertion that absolute Galilean motion or absolute velocity must ever escape all experimental detection. Henceforth absolute velocity should be conceived of as physically meaningless, not only in the particular ream of mechanics, as in Newton’s day, but in the entire realm of physical phenomena. Einstein’s special principle, by adding increased emphasis to this relativity of velocity, making absolute velocity metaphysically meaningless, created a still more profound distinction between velocity and accelerated or rotational motion. This latter type of motion remained absolute and real as before. It is most important to understand this point and to realize that Einstein’s special principle is merely an extension of the validity of the classical Newtonian principle to all classes of phenomena.According to the author, why did the Greeks NOT conduct experiments to understand the physical world?
 ....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions