1. Even though heat transfer co-efficients in boiling liquids is large, use of fins is advantageous, when the entire surface is exposed to __________ boiling.





Write Comment

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->Kerala-based private sector lender Federal Bank is openingincubation centres for startups in __________ and __________.....
QA->A Govt.servant working at Kollam attended obligatory departmental tests for 5 days in January 2012 at Kannur, even though Kollam was also a centre. He is eligible for:....
QA->Government purchase policy generally permits a price performance up to 15% or even up to ……….. % or even higher in special circumstances for indigenous products over imported stores.....
QA->The purpose of circumferential fins constructed on the outer periphery of the break drum is to?....
QA->Synonym of Advantageous (adj.)....
MCQ->Even though heat transfer co-efficients in boiling liquids is large, use of fins is advantageous, when the entire surface is exposed to __________ boiling.....
MCQ->In spite of large heat transfer co-efficients in boiling liquids, fins are used advantageously, where the entire surface is exposed to __________ boiling.....
MCQ-> The broad scientific understanding today is that our planet is experiencing a warming trend over and above natural and normal variations that is almost certainly due to human activities associated with large-scale manufacturing. The process began in the late 1700s with the Industrial Revolution, when manual labor, horsepower, and water power began to be replaced by or enhanced by machines. This revolution, over time, shifted Britain, Europe, and eventually North America from largely agricultural and trading societies to manufacturing ones, relying on machinery and engines rather than tools and animals.The Industrial Revolution was at heart a revolution in the use of energy and power. Its beginning is usually dated to the advent of the steam engine, which was based on the conversion of chemical energy in wood or coal to thermal energy and then to mechanical work primarily the powering of industrial machinery and steam locomotives. Coal eventually supplanted wood because, pound for pound, coal contains twice as much energy as wood (measured in BTUs, or British thermal units, per pound) and because its use helped to save what was left of the world's temperate forests. Coal was used to produce heat that went directly into industrial processes, including metallurgy, and to warm buildings, as well as to power steam engines. When crude oil came along in the mid- 1800s, still a couple of decades before electricity, it was burned, in the form of kerosene, in lamps to make light replacing whale oil. It was also used to provide heat for buildings and in manufacturing processes, and as a fuel for engines used in industry and propulsion.In short, one can say that the main forms in which humans need and use energy are for light, heat, mechanical work and motive power, and electricity which can be used to provide any of the other three, as well as to do things that none of those three can do, such as electronic communications and information processing. Since the Industrial Revolution, all these energy functions have been powered primarily, but not exclusively, by fossil fuels that emit carbon dioxide (CO2), To put it another way, the Industrial Revolution gave a whole new prominence to what Rochelle Lefkowitz, president of Pro-Media Communications and an energy buff, calls "fuels from hell" - coal, oil, and natural gas. All these fuels from hell come from underground, are exhaustible, and emit CO2 and other pollutants when they are burned for transportation, heating, and industrial use. These fuels are in contrast to what Lefkowitz calls "fuels from heaven" -wind, hydroelectric, tidal, biomass, and solar power. These all come from above ground, are endlessly renewable, and produce no harmful emissions.Meanwhile, industrialization promoted urbanization, and urbanization eventually gave birth to suburbanization. This trend, which was repeated across America, nurtured the development of the American car culture, the building of a national highway system, and a mushrooming of suburbs around American cities, which rewove the fabric of American life. Many other developed and developing countries followed the American model, with all its upsides and downsides. The result is that today we have suburbs and ribbons of highways that run in, out, and around not only America s major cities, but China's, India's, and South America's as well. And as these urban areas attract more people, the sprawl extends in every direction.All the coal, oil, and natural gas inputs for this new economic model seemed relatively cheap, relatively inexhaustible, and relatively harmless-or at least relatively easy to clean up afterward. So there wasn't much to stop the juggernaut of more people and more development and more concrete and more buildings and more cars and more coal, oil, and gas needed to build and power them. Summing it all up, Andy Karsner, the Department of Energy's assistant secretary for energy efficiency and renewable energy, once said to me: "We built a really inefficient environment with the greatest efficiency ever known to man."Beginning in the second half of the twentieth century, a scientific understanding began to emerge that an excessive accumulation of largely invisible pollutants-called greenhouse gases - was affecting the climate. The buildup of these greenhouse gases had been under way since the start of the Industrial Revolution in a place we could not see and in a form we could not touch or smell. These greenhouse gases, primarily carbon dioxide emitted from human industrial, residential, and transportation sources, were not piling up along roadsides or in rivers, in cans or empty bottles, but, rather, above our heads, in the earth's atmosphere. If the earth's atmosphere was like a blanket that helped to regulate the planet's temperature, the CO2 buildup was having the effect of thickening that blanket and making the globe warmer.Those bags of CO2 from our cars float up and stay in the atmosphere, along with bags of CO2 from power plants burning coal, oil, and gas, and bags of CO2 released from the burning and clearing of forests, which releases all the carbon stored in trees, plants, and soil. In fact, many people don't realize that deforestation in places like Indonesia and Brazil is responsible for more CO2 than all the world's cars, trucks, planes, ships, and trains combined - that is, about 20 percent of all global emissions. And when we're not tossing bags of carbon dioxide into the atmosphere, we're throwing up other greenhouse gases, like methane (CH4) released from rice farming, petroleum drilling, coal mining, animal defecation, solid waste landfill sites, and yes, even from cattle belching. Cattle belching? That's right-the striking thing about greenhouse gases is the diversity of sources that emit them. A herd of cattle belching can be worse than a highway full of Hummers. Livestock gas is very high in methane, which, like CO2, is colorless and odorless. And like CO2, methane is one of those greenhouse gases that, once released into the atmosphere, also absorb heat radiating from the earth's surface. "Molecule for molecule, methane's heat-trapping power in the atmosphere is twenty-one times stronger than carbon dioxide, the most abundant greenhouse gas.." reported Science World (January 21, 2002). “With 1.3 billion cows belching almost constantly around the world (100 million in the United States alone), it's no surprise that methane released by livestock is one of the chief global sources of the gas, according to the U.S. Environmental Protection Agency ... 'It's part of their normal digestion process,' says Tom Wirth of the EPA. 'When they chew their cud, they regurgitate [spit up] some food to rechew it, and all this gas comes out.' The average cow expels 600 liters of methane a day, climate researchers report." What is the precise scientific relationship between these expanded greenhouse gas emissions and global warming? Experts at the Pew Center on Climate Change offer a handy summary in their report "Climate Change 101. " Global average temperatures, notes the Pew study, "have experienced natural shifts throughout human history. For example; the climate of the Northern Hemisphere varied from a relatively warm period between the eleventh and fifteenth centuries to a period of cooler temperatures between the seventeenth century and the middle of the nineteenth century. However, scientists studying the rapid rise in global temperatures during the late twentieth century say that natural variability cannot account for what is happening now." The new factor is the human factor-our vastly increased emissions of carbon dioxide and other greenhouse gases from the burning of fossil fuels such as coal and oil as well as from deforestation, large-scale cattle-grazing, agriculture, and industrialization.“Scientists refer to what has been happening in the earth’s atmosphere over the past century as the ‘enhanced greenhouse effect’”, notes the Pew study. By pumping man- made greenhouse gases into the atmosphere, humans are altering the process by which naturally occurring greenhouse gases, because of their unique molecular structure, trap the sun’s heat near the earth’s surface before that heat radiates back into space."The greenhouse effect keeps the earth warm and habitable; without it, the earth's surface would be about 60 degrees Fahrenheit colder on average. Since the average temperature of the earth is about 45 degrees Fahrenheit, the natural greenhouse effect is clearly a good thing. But the enhanced greenhouse effect means even more of the sun's heat is trapped, causing global temperatures to rise. Among the many scientific studies providing clear evidence that an enhanced greenhouse effect is under way was a 2005 report from NASA's Goddard Institute for Space Studies. Using satellites, data from buoys, and computer models to study the earth's oceans, scientists concluded that more energy is being absorbed from the sun than is emitted back to space, throwing the earth's energy out of balance and warming the globe."Which of the following statements is correct? (I) Greenhouse gases are responsible for global warming. They should be eliminated to save the planet (II) CO2 is the most dangerous of the greenhouse gases. Reduction in the release of CO2 would surely bring down the temperature (III) The greenhouse effect could be traced back to the industrial revolution. But the current development and the patterns of life have enhanced their emissions (IV) Deforestation has been one of the biggest factors contributing to the emission of greenhouse gases Choose the correct option:....
MCQ-> If translated into English, most of the ways economists talk among themselves would sound plausible enough to poets, journalists, businesspeople, and other thoughtful though non-economical folk. Like serious talk anywhere — among boat desingers and baseball fans, say — the talk is hard to follow when one has not made a habit of listening to it for a while. The culture of the conversation makes the words arcane. But the people in the unfamiliar conversation are not Martians. Underneath it all (the economist’s favourite phrase) conversational habits are similar. Economics uses mathematical models and statistical tests and market arguments, all of which look alien to the literary eye. But looked at closely they are not so alien. They may be seen as figures of speech-metaphors, analogies, and appeals to authority.Figures of speech are not mere frills. They think for us. Someone who thinks of a market as an ‘invisible hand’ and the organization of work as a ‘production function’ and his coefficients as being ‘significant’, as an economist does, is giving the language a lot of responsibility. It seems a good idea to look hard at his language.If the economic conversation were found to depend a lot on its verbal forms, this would not mean that economics would be not a science, or just a matter of opinion, or some sort of confidence game. Good poets, though not scientists, are serious thinkers about symbols; good historians, though not scientists, are serious thinkers about data. Good scientists also use language. What is more (though it remains to be shown) they use the cunning of language, without particularly meaning to. The language used is a social object, and using language is a social act. It requires cunning (or, if you prefer, consideration), attention to the other minds present when one speaks.The paying of attention to one’s audience is called ‘rhetoric’, a word that I later exercise hard. One uses rhetoric, of course, to warn of a fire in a theatre or to arouse the xenophobia of the electorate. This sort of yelling is the vulgar meaning of the word, like the president’s ‘heated rhetoric’ in a press conference or the ‘mere rhetoric’ to which our enemies stoop. Since the Greek flame was lit, though, the word has been used also in a broader and more amiable sense, to mean the study of all the ways of accomplishing things with language: inciting a mob to lynch the accused, to be sure, but also persuading readers of a novel that its characters breathe, or bringing scholars to accept the better argument and reject the worse.The question is whether the scholar- who usually fancies himself an announcer of ‘results’ or a stater of ‘conclusions’ free of rhetoric — speaks rhetorically. Does he try to persuade? It would seem so. Language, I just said, is not a solitary accomplishment. The scholar doesn’t speak into the void, or to himself. He speaks to a community of voices. He desires to be heeded, praised, published, imitated, honoured, en-Nobeled. These are the desires. The devices of language are the means. Rhetoric is the proportioning of means to desires in speech.Rhetoric is an economics of language, the study of how scarce means are allocated to the insatiable desires of people to be heard. It seems on the face of it a reasonable hypothesis that economists are like other people in being talkers, who desire listeners whey they go to the library or the laboratory as much as when they go to the office or the polls. The purpose here is to see if this is true, and to see if it is useful: to study the rhetoric of economic scholarship.The subject is scholarship. It is not the economy, or the adequacy of economic theory as a description of the economy, or even mainly the economist’s role in the economy. The subject is the conversation economists have among themselves, for purposes of persuading each other that the interest elasticity of demand for investment is zero or that the money supply is controlled by the Federal Reserve.Unfortunately, though, the conclusions are of more than academic interest. The conversations of classicists or of astronomers rarely affect the lives of other people. Those of economists do so on a large scale. A well known joke describes a May Day parade through Red Square with the usual mass of soldiers, guided missiles, rocket launchers. At last come rank upon rank of people in gray business suits. A bystander asks, “Who are those?” “Aha!” comes the reply, ”those are economists: you have no idea what damage they can do!” Their conversations do it.According to the passage, which of the following is the best set of reasons for which one needs to ‘look hard’ at an economist’s language?A. Economists accomplish a great deal through their language.B. Economics is an opinion-based subject.C. Economics has a great impact on other’s lives.D. Economics is damaging.
 ....
MCQ->Extended heat transfer surface like fins are used to increase the heat transfer rate. Fin efficiency is defined as the ratio of heat transferred across the fin surface to the theoretical heat transfer across an equal area held at the....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions