1. A circular rod 2 m long tapers from 20 mm diameter at one end to 10 mm diameter at the other On applying an axial pull of 6kN,it was found to extend by 068 mm.Find the Young’s modulus of the material of the rod





Write Comment

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->What is the SI unit of Young’s modulus of elasticity?....
QA->A car which runs along a straight level road at a speed of 36km/hour is brought to rest in 2 seconds by applying the brakes. The stopping distance is :....
QA->Which country launched the world’s fastest train service covering a distance of 1,068 kms at the average speed of 350 kms an hour?....
QA->How long does India’s economic zone extend miles off its coast?....
QA->The angle subtended the long chord of a simple circular at its centre is equal to:....
MCQ->A circular rod 2 m long tapers from 20 mm diameter at one end to 10 mm diameter at the other On applying an axial pull of 6kN,it was found to extend by 068 mm.Find the Young’s modulus of the material of the rod....
MCQ-> Read the passage carefully and answer the questions given. . . “Everybody pretty much agrees that the relationship between elephants and people has dramatically changed,” [says psychologist Gay] Bradshaw. . . . “Where for centuries humans and elephants lived in relatively peaceful coexistence, there is now hostility and violence. Now, I use the term ‘violence’ because of the intentionality associated with it, both in the aggression of humans and, at times, the recently observed behavior of elephants.” . . .Typically, elephant researchers have cited, as a cause of aggression, the high levels of testosterone in newly matured male elephants or the competition for land and resources between elephants and humans. But. . . Bradshaw and several colleagues argue. . . that today’s elephant populations are suffering from a form of chronic stress, a kind of species-wide trauma. Decades of poaching and culling and habitat loss, they claim, have so disrupted the intricate web of familial and societal relations by which young elephants have traditionally been raised in the wild, and by which established elephant herds are governed, that what we are now witnessing is nothing less than a precipitous collapse of elephant culture. . . .Elephants, when left to their own devices, are profoundly social creatures. . . . Young elephants are raised within an extended, multitiered network of doting female caregivers that includes the birth mother, grandmothers, aunts and friends. These relations are maintained over a life span as long as 70 years. Studies of established herds have shown that young elephants stay within 15 feet of their mothers for nearly all of their first eight years of life, after which young females are socialized into the matriarchal network, while young males go off for a time into an all-male social group before coming back into the fold as mature adults. . . .This fabric of elephant society, Bradshaw and her colleagues [demonstrate], ha[s] effectively been frayed by years of habitat loss and poaching, along with systematic culling by government agencies to control elephant numbers and translocations of herds to different habitats. . . . As a result of such social upheaval, calves are now being born to and raised by ever younger and inexperienced mothers. Young orphaned elephants, meanwhile, that have witnessed the death of a parent at the hands of poachers are coming of age in the absence of the support system that defines traditional elephant life. “The loss of elephant elders,” [says] Bradshaw . . . "and the traumatic experience of witnessing the massacres of their family, impairs normal brain and behavior development in young elephants.”What Bradshaw and her colleagues describe would seem to be an extreme form of anthropocentric conjecture if the evidence that they’ve compiled from various elephant researchers. . . weren’t so compelling. The elephants of decimated herds, especially orphans who’ve watched the death of their parents and elders from poaching and culling, exhibit behavior typically associated with post-traumatic stress disorder and other trauma-related disorders in humans: abnormal startle response, unpredictable asocial behavior, inattentive mothering and hyperaggression. . . .[According to Bradshaw], “Elephants are suffering and behaving in the same ways that we recognize in ourselves as a result of violence. . . . Except perhaps for a few specific features, brain organization and early development of elephants and humans are extremely similar.”Which of the following statements best expresses the overall argument of this passage?
 ....
MCQ->A given material has Young's modulus E, modulus of rigidity G and Poisson's ratio of Young's modulus to modulus of rigidity of this material is,....
MCQ-> Cells are the ultimate multi-taskers: they can switch on genes and carry out their orders, talk to each other, divide in two, and much more, all at the same time. But they couldn’t do any of these tricks without a power source to generate movement. The inside of a cell bustles with more traffic than Delhi roads, and, like all vehicles, the cell’s moving parts need engines. Physicists and biologists have looked ‘under the hood’ of the cell and laid out the nuts and bolts of molecular engines.The ability of such engines to convert chemical energy into motion is the envy nanotechnology researchers looking for ways to power molecule-sized devices. Medical researchers also want to understand how these engines work. Because these molecules are essential for cell division, scientists hope to shut down the rampant growth of cancer cells by deactivating certain motors. Improving motor-driven transport in nerve cells may also be helpful for treating diseases such as Alzheimer’s, Parkinson’s or ALS, also known as Lou Gehrig’s disease.We wouldn’t make it far in life without motor proteins. Our muscles wouldn’t contract. We couldn’t grow, because the growth process requires cells to duplicate their machinery and pull the copies apart. And our genes would be silent without the services of messenger RNA, which carries genetic instructions over to the cell’s protein-making factories. The movements that make these cellular activities possible occur along a complex network of threadlike fibers, or polymers, along which bundles of molecules travel like trams. The engines that power the cell’s freight are three families of proteins, called myosin, kinesin and dynein. For fuel, these proteins burn molecules of ATP, which cells make when they break down the carbohydrates and fats from the foods we eat. The energy from burning ATP causes changes in the proteins’ shape that allow them to heave themselves along the polymer track. The results are impressive: In one second, these molecules can travel between 50 and 100 times their own diameter. If a car with a five-foot-wide engine were as efficient, it would travel 170 to 340 kilometres per hour.Ronald Vale, a researcher at the Howard Hughes Medical Institute and the University of California at San Francisco, and Ronald Milligan of the Scripps Research Institute have realized a long-awaited goal by reconstructing the process by which myosin and kinesin move, almost down to the atom. The dynein motor, on the other hand, is still poorly understood. Myosin molecules, best known for their role in muscle contraction, form chains that lie between filaments of another protein called actin. Each myosin molecule has a tiny head that pokes out from the chain like oars from a canoe. Just as rowers propel their boat by stroking their oars through the water, the myosin molecules stick their heads into the actin and hoist themselves forward along the filament. While myosin moves along in short strokes, its cousin kinesin walks steadily along a different type of filament called a microtubule. Instead of using a projecting head as a lever, kinesin walks on two ‘legs’. Based on these differences, researchers used to think that myosin and kinesin were virtually unrelated. But newly discovered similarities in the motors’ ATP-processing machinery now suggest that they share a common ancestor — molecule. At this point, scientists can only speculate as to what type of primitive cell-like structure this ancestor occupied as it learned to burn ATP and use the energy to change shape. “We’ll never really know, because we can’t dig up the remains of ancient proteins, but that was probably a big evolutionary leap,” says Vale.On a slightly larger scale, loner cells like sperm or infectious bacteria are prime movers that resolutely push their way through to other cells. As L. Mahadevan and Paul Matsudaira of the Massachusetts Institute of Technology explain, the engines in this case are springs or ratchets that are clusters of molecules, rather than single proteins like myosin and kinesin. Researchers don’t yet fully understand these engines’ fueling process or the details of how they move, but the result is a force to be reckoned with. For example, one such engine is a spring-like stalk connecting a single-celled organism called a vorticellid to the leaf fragment it calls home. When exposed to calcium, the spring contracts, yanking the vorticellid down at speeds approaching three inches (eight centimetres) per second.Springs like this are coiled bundles of filaments that expand or contract in response to chemical cues. A wave of positively charged calcium ions, for example, neutralizes the negative charges that keep the filaments extended. Some sperm use spring-like engines made of actin filaments to shoot out a barb that penetrates the layers that surround an egg. And certain viruses use a similar apparatus to shoot their DNA into the host’s cell. Ratchets are also useful for moving whole cells, including some other sperm and pathogens. These engines are filaments that simply grow at one end, attracting chemical building blocks from nearby. Because the other end is anchored in place, the growing end pushes against any barrier that gets in its way.Both springs and ratchets are made up of small units that each move just slightly, but collectively produce a powerful movement. Ultimately, Mahadevan and Matsudaira hope to better understand just how these particles create an effect that seems to be so much more than the sum of its parts. Might such an understanding provide inspiration for ways to power artificial nano-sized devices in the future? “The short answer is absolutely,” says Mahadevan. “Biology has had a lot more time to evolve enormous richness in design for different organisms. Hopefully, studying these structures will not only improve our understanding of the biological world, it will also enable us to copy them, take apart their components and recreate them for other purpose.”According to the author, research on the power source of movement in cells can contribute to
 ....
MCQ->The extension of a circular bar tapering uniformly from diameter d1 at one end to diameter d2 at the other end, and subjected to an axial pull of P is __________ the extension of a circular bar of diameter d1 d2 subjected to the same load P.....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions