1. In Mizoram, the settlement pattern is mostly of ‘linear type’ along the ridges because





Write Comment

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->Which algorithm is used to search a given text for a particular keyword pattern and record the number of times the keyword or pattern is found?....
QA->Aretes are sharp ridges which develop between adjacent?....
QA->Which coastline formed by the submergence of mountain ridges running parallel to the coast?....
QA->The Keralite who resigned the post of Governor of Mizoram-....
QA->Which team was defeated by Mizoram in thefinal of 2014 Santosh trophy?....
MCQ-> DIRECTIONS for questions 24 to 50: Each of the five passages given below is followed by questions. For each question, choose the best answer.The World Trade Organisation (WTO) was created in the early 1990s as a component of the Uruguay Round negotiation. However, it could have been negotiated as part of the Tokyo Round of the 1970s, since that negotiation was an attempt at a 'constitutional reform' of the General Agreement on Tariffs and Trade (GATT). Or it could have been put off to the future, as the US government wanted. What factors led to the creation of the WTO in the early 1990s?One factor was the pattern of multilateral bargaining that developed late in the Uruguay Round. Like all complex international agreements, the WTO was a product of a series of trade-offs between principal actors and groups. For the United States, which did not want a new Organisation, the dispute settlement part of the WTO package achieved its longstanding goal of a more effective and more legal dispute settlement system. For the Europeans, who by the 1990s had come to view GATT dispute settlement less in political terms and more as a regime of legal obligations, the WTO package was acceptable as a means to discipline the resort to unilateral measures by the United States. Countries like Canada and other middle and smaller trading partners were attracted by the expansion of a rules-based system and by the symbolic value of a trade Organisation, both of which inherently support the weak against the strong. The developing countries were attracted due to the provisions banning unilateral measures. Finally, and perhaps most important, many countries at the Uruguay Round came to put a higher priority on the export gains than on the import losses that the negotiation would produce, and they came to associate the WTO and a rules-based system with those gains. This reasoning - replicated in many countries - was contained in U.S. Ambassador Kantor's defence of the WTO, and it amounted to a recognition that international trade and its benefits cannot be enjoyed unless trading nations accept the discipline of a negotiated rules-based environment.A second factor in the creation of the WTO was pressure from lawyers and the legal process. The dispute settlement system of the WTO was seen as a victory of legalists over pragmatists but the matter went deeper than that. The GATT, and the WTO, are contract organisations based on rules, and it is inevitable that an Organisation created to further rules will in turn be influenced by the legal process. Robert Hudec has written of the 'momentum of legal development', but what is this precisely? Legal development can be defined as promotion of the technical legal values of consistency, clarity (or, certainty) and effectiveness; these are values that those responsible for administering any legal system will seek to maximise. As it played out in the WTO, consistency meant integrating under one roof the whole lot of separate agreements signed under GATT auspices; clarity meant removing ambiguities about the powers of contracting parties to make certain decisions or to undertake waivers; and effectiveness meant eliminating exceptions arising out of grandfather-rights and resolving defects in dispute settlement procedures and institutional provisions. Concern for these values is inherent in any rules-based system of co-operation, since without these values rules would be meaningless in the first place. Rules, therefore, create their own incentive for fulfilment.The momentum of legal development has occurred in other institutions besides the GATT, most notably in the European Union (EU). Over the past two decades the European Court of Justice (ECJ) has consistently rendered decisions that have expanded incrementally the EU's internal market, in which the doctrine of 'mutual recognition' handed down in the case Cassis de Dijon in 1979 was a key turning point. The Court is now widely recognised as a major player in European integration, even though arguably such a strong role was not originally envisaged in the Treaty of Rome, which initiated the current European Union. One means the Court used to expand integration was the 'teleological method of interpretation', whereby the actions of member states were evaluated against 'the accomplishment of the most elementary community goals set forth in the Preamble to the [Rome] treaty'. The teleological method represents an effort to keep current policies consistent with stated goals, and it is analogous to the effort in GATT to keep contracting party trade practices consistent with stated rules. In both cases legal concerns and procedures are an independent force for further cooperation.In large part the WTO was an exercise in consolidation. In the context of a trade negotiation that created a near- revolutionary expansion of international trade rules, the formation of the WTO was a deeply conservative act needed to ensure that the benefits of the new rules would not be lost. The WTO was all about institutional structure and dispute settlement: these are the concerns of conservatives and not revolutionaries, which is why lawyers and legalists took the lead on these issues. The WTO codified the GATT institutional practice that had developed by custom over three decades, and it incorporated a new dispute settlement system that was necessary to keep both old and new rules from becoming a sham. Both the international structure and the dispute settlement system were necessary to preserve and enhance the integrity of the multilateral trade regime that had been built incrementally from the 1940s to the 1990s.What could be the closest reason why the WTO was not formed in the 1970s?
 ....
MCQ->In Mizoram, the settlement pattern is mostly of ‘linear type’ along the ridges because....
MCQ-> Cells are the ultimate multi-taskers: they can switch on genes and carry out their orders, talk to each other, divide in two, and much more, all at the same time. But they couldn’t do any of these tricks without a power source to generate movement. The inside of a cell bustles with more traffic than Delhi roads, and, like all vehicles, the cell’s moving parts need engines. Physicists and biologists have looked ‘under the hood’ of the cell and laid out the nuts and bolts of molecular engines.The ability of such engines to convert chemical energy into motion is the envy nanotechnology researchers looking for ways to power molecule-sized devices. Medical researchers also want to understand how these engines work. Because these molecules are essential for cell division, scientists hope to shut down the rampant growth of cancer cells by deactivating certain motors. Improving motor-driven transport in nerve cells may also be helpful for treating diseases such as Alzheimer’s, Parkinson’s or ALS, also known as Lou Gehrig’s disease.We wouldn’t make it far in life without motor proteins. Our muscles wouldn’t contract. We couldn’t grow, because the growth process requires cells to duplicate their machinery and pull the copies apart. And our genes would be silent without the services of messenger RNA, which carries genetic instructions over to the cell’s protein-making factories. The movements that make these cellular activities possible occur along a complex network of threadlike fibers, or polymers, along which bundles of molecules travel like trams. The engines that power the cell’s freight are three families of proteins, called myosin, kinesin and dynein. For fuel, these proteins burn molecules of ATP, which cells make when they break down the carbohydrates and fats from the foods we eat. The energy from burning ATP causes changes in the proteins’ shape that allow them to heave themselves along the polymer track. The results are impressive: In one second, these molecules can travel between 50 and 100 times their own diameter. If a car with a five-foot-wide engine were as efficient, it would travel 170 to 340 kilometres per hour.Ronald Vale, a researcher at the Howard Hughes Medical Institute and the University of California at San Francisco, and Ronald Milligan of the Scripps Research Institute have realized a long-awaited goal by reconstructing the process by which myosin and kinesin move, almost down to the atom. The dynein motor, on the other hand, is still poorly understood. Myosin molecules, best known for their role in muscle contraction, form chains that lie between filaments of another protein called actin. Each myosin molecule has a tiny head that pokes out from the chain like oars from a canoe. Just as rowers propel their boat by stroking their oars through the water, the myosin molecules stick their heads into the actin and hoist themselves forward along the filament. While myosin moves along in short strokes, its cousin kinesin walks steadily along a different type of filament called a microtubule. Instead of using a projecting head as a lever, kinesin walks on two ‘legs’. Based on these differences, researchers used to think that myosin and kinesin were virtually unrelated. But newly discovered similarities in the motors’ ATP-processing machinery now suggest that they share a common ancestor — molecule. At this point, scientists can only speculate as to what type of primitive cell-like structure this ancestor occupied as it learned to burn ATP and use the energy to change shape. “We’ll never really know, because we can’t dig up the remains of ancient proteins, but that was probably a big evolutionary leap,” says Vale.On a slightly larger scale, loner cells like sperm or infectious bacteria are prime movers that resolutely push their way through to other cells. As L. Mahadevan and Paul Matsudaira of the Massachusetts Institute of Technology explain, the engines in this case are springs or ratchets that are clusters of molecules, rather than single proteins like myosin and kinesin. Researchers don’t yet fully understand these engines’ fueling process or the details of how they move, but the result is a force to be reckoned with. For example, one such engine is a spring-like stalk connecting a single-celled organism called a vorticellid to the leaf fragment it calls home. When exposed to calcium, the spring contracts, yanking the vorticellid down at speeds approaching three inches (eight centimetres) per second.Springs like this are coiled bundles of filaments that expand or contract in response to chemical cues. A wave of positively charged calcium ions, for example, neutralizes the negative charges that keep the filaments extended. Some sperm use spring-like engines made of actin filaments to shoot out a barb that penetrates the layers that surround an egg. And certain viruses use a similar apparatus to shoot their DNA into the host’s cell. Ratchets are also useful for moving whole cells, including some other sperm and pathogens. These engines are filaments that simply grow at one end, attracting chemical building blocks from nearby. Because the other end is anchored in place, the growing end pushes against any barrier that gets in its way.Both springs and ratchets are made up of small units that each move just slightly, but collectively produce a powerful movement. Ultimately, Mahadevan and Matsudaira hope to better understand just how these particles create an effect that seems to be so much more than the sum of its parts. Might such an understanding provide inspiration for ways to power artificial nano-sized devices in the future? “The short answer is absolutely,” says Mahadevan. “Biology has had a lot more time to evolve enormous richness in design for different organisms. Hopefully, studying these structures will not only improve our understanding of the biological world, it will also enable us to copy them, take apart their components and recreate them for other purpose.”According to the author, research on the power source of movement in cells can contribute to
 ....
MCQ->Consider the following statements regarding settlement of foundations :1. Differential settlement of foundation leads to structural damage to the superstructure.2. In non-cohesive soils, the major component of settlement is due to consolidation.3. Lowering of ground water table contributes of settlement of foundations.Of these statements :....
MCQ->In a nut and bolt, the diameter at which the ridges on the bolt are in complete touch with the ridges of the corresponding nut, is called pitch diameter.....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions