1. A molecular technique in which DNA sequences between two oligonucleotide primers can be amplified is known as





Write Comment

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->By using which technique; is DNA fingerprint done?....
QA->By using which technique, is DNA fingerprint done?....
QA->Who developed the technique DNA finger printing ?....
QA->The technique of DNA finger printing has been developed by ?....
QA->The DNA testng technique was first reported in 1984 by?....
MCQ->A molecular technique in which DNA sequences between two oligonucleotide primers can be amplified is known as....
MCQ-> Cells are the ultimate multi-taskers: they can switch on genes and carry out their orders, talk to each other, divide in two, and much more, all at the same time. But they couldn’t do any of these tricks without a power source to generate movement. The inside of a cell bustles with more traffic than Delhi roads, and, like all vehicles, the cell’s moving parts need engines. Physicists and biologists have looked ‘under the hood’ of the cell and laid out the nuts and bolts of molecular engines.The ability of such engines to convert chemical energy into motion is the envy nanotechnology researchers looking for ways to power molecule-sized devices. Medical researchers also want to understand how these engines work. Because these molecules are essential for cell division, scientists hope to shut down the rampant growth of cancer cells by deactivating certain motors. Improving motor-driven transport in nerve cells may also be helpful for treating diseases such as Alzheimer’s, Parkinson’s or ALS, also known as Lou Gehrig’s disease.We wouldn’t make it far in life without motor proteins. Our muscles wouldn’t contract. We couldn’t grow, because the growth process requires cells to duplicate their machinery and pull the copies apart. And our genes would be silent without the services of messenger RNA, which carries genetic instructions over to the cell’s protein-making factories. The movements that make these cellular activities possible occur along a complex network of threadlike fibers, or polymers, along which bundles of molecules travel like trams. The engines that power the cell’s freight are three families of proteins, called myosin, kinesin and dynein. For fuel, these proteins burn molecules of ATP, which cells make when they break down the carbohydrates and fats from the foods we eat. The energy from burning ATP causes changes in the proteins’ shape that allow them to heave themselves along the polymer track. The results are impressive: In one second, these molecules can travel between 50 and 100 times their own diameter. If a car with a five-foot-wide engine were as efficient, it would travel 170 to 340 kilometres per hour.Ronald Vale, a researcher at the Howard Hughes Medical Institute and the University of California at San Francisco, and Ronald Milligan of the Scripps Research Institute have realized a long-awaited goal by reconstructing the process by which myosin and kinesin move, almost down to the atom. The dynein motor, on the other hand, is still poorly understood. Myosin molecules, best known for their role in muscle contraction, form chains that lie between filaments of another protein called actin. Each myosin molecule has a tiny head that pokes out from the chain like oars from a canoe. Just as rowers propel their boat by stroking their oars through the water, the myosin molecules stick their heads into the actin and hoist themselves forward along the filament. While myosin moves along in short strokes, its cousin kinesin walks steadily along a different type of filament called a microtubule. Instead of using a projecting head as a lever, kinesin walks on two ‘legs’. Based on these differences, researchers used to think that myosin and kinesin were virtually unrelated. But newly discovered similarities in the motors’ ATP-processing machinery now suggest that they share a common ancestor — molecule. At this point, scientists can only speculate as to what type of primitive cell-like structure this ancestor occupied as it learned to burn ATP and use the energy to change shape. “We’ll never really know, because we can’t dig up the remains of ancient proteins, but that was probably a big evolutionary leap,” says Vale.On a slightly larger scale, loner cells like sperm or infectious bacteria are prime movers that resolutely push their way through to other cells. As L. Mahadevan and Paul Matsudaira of the Massachusetts Institute of Technology explain, the engines in this case are springs or ratchets that are clusters of molecules, rather than single proteins like myosin and kinesin. Researchers don’t yet fully understand these engines’ fueling process or the details of how they move, but the result is a force to be reckoned with. For example, one such engine is a spring-like stalk connecting a single-celled organism called a vorticellid to the leaf fragment it calls home. When exposed to calcium, the spring contracts, yanking the vorticellid down at speeds approaching three inches (eight centimetres) per second.Springs like this are coiled bundles of filaments that expand or contract in response to chemical cues. A wave of positively charged calcium ions, for example, neutralizes the negative charges that keep the filaments extended. Some sperm use spring-like engines made of actin filaments to shoot out a barb that penetrates the layers that surround an egg. And certain viruses use a similar apparatus to shoot their DNA into the host’s cell. Ratchets are also useful for moving whole cells, including some other sperm and pathogens. These engines are filaments that simply grow at one end, attracting chemical building blocks from nearby. Because the other end is anchored in place, the growing end pushes against any barrier that gets in its way.Both springs and ratchets are made up of small units that each move just slightly, but collectively produce a powerful movement. Ultimately, Mahadevan and Matsudaira hope to better understand just how these particles create an effect that seems to be so much more than the sum of its parts. Might such an understanding provide inspiration for ways to power artificial nano-sized devices in the future? “The short answer is absolutely,” says Mahadevan. “Biology has had a lot more time to evolve enormous richness in design for different organisms. Hopefully, studying these structures will not only improve our understanding of the biological world, it will also enable us to copy them, take apart their components and recreate them for other purpose.”According to the author, research on the power source of movement in cells can contribute to
 ....
MCQ->Different DNA polymerases play distinct roles in DNA replication and repair in both prokaryotic and eukaryotic cells. All known DNA polymerases synthesize DNA only in the __________ by the addition of dNTPs to a performed primer strand of DNA.....
MCQ->In a differential connection, the signals that are opposite at the inputs are ________ amplified, and those that are common to the two inputs are ________ amplified.....
MCQ-> Read the following passage and solve the questions based on it.Taking note of the day-long heavy queue in front of the Tarangabad Transport Department office everyday for obtaining transport permits, the City Administration comes out with a ‘Single Office-Five Windows’ system for facilitating the process. For simplicity, the windows are named as W1, W2, W3, W4 and W5 respectively. Office hours are from 8:00 AM to 5:30 PM, barring Saturday, when the office closes by 2.30 PM. To streamline the rush and reduce pressure on the employees, the working hours of the aforesaid windows are defined in the following manner:1. W1 is open between 9.30 AM and 2.30 PM on Monday and Wednesday, between 8.00 AM and 11.30 AM on Tuesday and Thursday and between 3.00 PM and 5.00 PM on Friday. 2. W2 is open between 8.30 AM and 11.30 AM on Wednesday and Thursday, between 8.00 AM and 10.00 AM on Friday, and between 12.30 PM and 2.30 PM on Monday and Saturday. 3. W3 is open between 10.00 AM and 12.30 PM on Wednesday and Saturday, between 10.00 AM and 12.00 Noon on Friday, and between 3.30 PM and 5.30 PM on Monday and Thursday. 4. W4 is open between 11.30 AM and 3.00 PM on Tuesday, between 12.30 PM and 3.00 PM on Thursday and Friday, between 8 AM and 10 AM on Saturday and Monday and between 3.30 PM to 5.30 PM on Wednesday. 5. W5 is open between 2.00 PM and 4.00 PM on Monday, 3.30 PM and 5.30 PM on Tuesday and Friday, between 8 AM and 10 AM on Wednesday and between 10.30 AM to 12.30 PM on Thursday.On which of the following days, maximum number of windows is simultaneously open at 9.45 AM?
 ....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions