1. Read the Following statements and answer the question that follows:1. But its most advanced formulation is called superstring theory, which even predicts the precise number of dimensions: ten. 2. However, the theory has already swept across the major physics research laboratories of the world and has irrevocably altered the scientific landscape of modern physics, generating a staggering number of research papers in the scientific literature (over 5,000 by one count). 3. Scientifically, the hyperspace theory goes by the names of Kaluza-Klein theory and supergravity. 4. The usual three dimensions of space (length, width, and breadth) and one of time are now extended by six more spatial dimensions. 5. We caution that the theory of hyperspace has not yet been experimentally confirmed and would, in fact, be exceedingly difficult to prove in the laboratory. Rank the above five statements so as to make it a logical sequence:






Write Comment

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->In a club 70% members read English news papers and 75% members read Malayalam news papers, while 20% do not read both papers. If 325 members read both the news papers, then the total numbers in the club is .........?....
QA->A cyclist goes 40 km towards East and then turning to right he goes 40 km. Again he turn to his left and goes 20 km. After this he turns to his left and goes 40 km, then again turns right and goes 10km. How far is he from his starting point?....
QA->One word Substitution of " Question or problem difficult to answer or understand.....
QA->Question or problem difficult to answer or understand.....
QA->Which Five Year Plan’s aim was to make India’Self Reliant’and ‘self Generating’Economy?....
MCQ->Read the Following statements and answer the question that follows:1. But its most advanced formulation is called superstring theory, which even predicts the precise number of dimensions: ten. 2. However, the theory has already swept across the major physics research laboratories of the world and has irrevocably altered the scientific landscape of modern physics, generating a staggering number of research papers in the scientific literature (over 5,000 by one count). 3. Scientifically, the hyperspace theory goes by the names of Kaluza-Klein theory and supergravity. 4. The usual three dimensions of space (length, width, and breadth) and one of time are now extended by six more spatial dimensions. 5. We caution that the theory of hyperspace has not yet been experimentally confirmed and would, in fact, be exceedingly difficult to prove in the laboratory. Rank the above five statements so as to make it a logical sequence:....
MCQ-> India is rushing headlong toward economic success and modernisation, counting on high- tech industries such as information technology and biotechnology to propel the nation toprosperity. India’s recent announcement that it would no longer produce unlicensed inexpensive generic pharmaceuticals bowed to the realities of the World TradeOrganisation while at the same time challenging the domestic drug industry to compete with the multinational firms. Unfortunately, its weak higher education sector constitutes the Achilles’ Heel of this strategy. Its systematic disinvestment in higher education inrecent years has yielded neither world-class research nor very many highly trained scholars, scientists, or managers to sustain high-tech development. India’s main competitors especially China but also Singapore, Taiwan, and South Korea — are investing in large and differentiated higher education systems. They are providingaccess to large number of students at the bottom of the academic system while at the same time building some research-based universities that are able to compete with theworld’s best institutions. The recent London Times Higher Education Supplement ranking of the world’s top 200 universities included three in China, three in Hong Kong,three in South Korea, one in Taiwan, and one in India (an Indian Institute of Technology at number 41.— the specific campus was not specified). These countries are positioningthemselves for leadership in the knowledge-based economies of the coming era. There was a time when countries could achieve economic success with cheap labour andlow-tech manufacturing. Low wages still help, but contemporary large-scale development requires a sophisticated and at least partly knowledge-based economy.India has chosen that path, but will find a major stumbling block in its university system. India has significant advantages in the 21st century knowledge race. It has a large high ereducation sector — the third largest in the world in student numbers, after China andthe United States. It uses English as a primary language of higher education and research. It has a long academic tradition. Academic freedom is respected. There are asmall number of high quality institutions, departments, and centres that can form the basis of quality sector in higher education. The fact that the States, rather than the Central Government, exercise major responsibility for higher education creates a rather cumbersome structure, but the system allows for a variety of policies and approaches. Yet the weaknesses far outweigh the strengths. India educates approximately 10 per cent of its young people in higher education compared with more than half in the major industrialised countries and 15 per cent in China. Almost all of the world’s academic systems resemble a pyramid, with a small high quality tier at the top and a massive sector at the bottom. India has a tiny top tier. None of its universities occupies a solid position at the top. A few of the best universities have some excellent departments and centres, and there is a small number of outstanding undergraduate colleges. The University Grants Commission’s recent major support of five universities to build on their recognised strength is a step toward recognising a differentiated academic system and fostering excellence. At present, the world-class institutions are mainly limited to the Indian Institutes of Technology (IITs), the Indian Institutes of Management (IIMs) and perhaps a few others such as the All India Institute of Medical Sciences and the Tata Institute of Fundamental Research. These institutions, combined, enroll well under 1 percent of the student population. India’s colleges and universities, with just a few exceptions, have become large, under-funded, ungovernable institutions. At many of them, politics has intruded into campus life, influencing academic appointments and decisions across levels. Under-investment in libraries, information technology, laboratories, and classrooms makes it very difficult to provide top-quality instruction or engage in cutting-edge research.The rise in the number of part-time teachers and the freeze on new full-time appointments in many places have affected morale in the academic profession. The lackof accountability means that teaching and research performance is seldom measured. The system provides few incentives to perform. Bureaucratic inertia hampers change.Student unrest and occasional faculty agitation disrupt operations. Nevertheless, with a semblance of normality, faculty administrators are. able to provide teaching, coordinate examinations, and award degrees. Even the small top tier of higher education faces serious problems. Many IIT graduates,well trained in technology, have chosen not to contribute their skills to the burgeoning technology sector in India. Perhaps half leave the country immediately upon graduation to pursue advanced study abroad — and most do not return. A stunning 86 per cent of students in science and technology fields from India who obtain degrees in the United States do not return home immediately following their study. Another significant group, of about 30 per cent, decides to earn MBAs in India because local salaries are higher.—and are lost to science and technology.A corps of dedicated and able teachers work at the IlTs and IIMs, but the lure of jobs abroad and in the private sector make it increasingly difficult to lure the best and brightest to the academic profession.Few in India are thinking creatively about higher education. There is no field of higher education research. Those in government as well as academic leaders seem content to do the “same old thing.” Academic institutions and systems have become large and complex. They need good data, careful analysis, and creative ideas. In China, more than two-dozen higher education research centers, and several government agencies are involved in higher education policy.India has survived with an increasingly mediocre higher education system for decades.Now as India strives to compete in a globalized economy in areas that require highly trained professionals, the quality of higher education becomes increasingly important.India cannot build internationally recognized research-oriented universities overnight,but the country has the key elements in place to begin and sustain the process. India will need to create a dozen or more universities that can compete internationally to fully participate in the new world economy. Without these universities, India is destined to remain a scientific backwater.Which of the following ‘statement(s) is/are correct in the context of the given passage ? I. India has the third largest higher education sector in the world in student numbers. II. India is moving rapidly toward economic success and modernisation through high tech industries such as information technology and bitechonology to make the nation to prosperity. III. India’s systematic disinvestment in higher education in recent years has yielded world class research and many world class trained scholars, scientists to sustain high-tech development.....
MCQ-> In a modern computer, electronic and magnetic storage technologies play complementary roles. Electronic memory chips are fast but volatile (their contents are lost when the computer is unplugged). Magnetic tapes and hard disks are slower, but have the advantage that they are non-volatile, so that they can be used to store software and documents even when the power is off.In laboratories around the world, however, researchers are hoping to achieve the best of both worlds. They are trying to build magnetic memory chips that could be used in place of today’s electronics. These magnetic memories would be nonvolatile; but they would also he faster, would consume less power, and would be able to stand up to hazardous environments more easily. Such chips would have obvious applications in storage cards for digital cameras and music- players; they would enable handheld and laptop computers to boot up more quickly and to operate for longer; they would allow desktop computers to run faster; they would doubtless have military and space-faring advantages too. But although the theory behind them looks solid, there are tricky practical problems and need to be overcome.Two different approaches, based on different magnetic phenomena, are being pursued. The first, being investigated by Gary Prinz and his colleagues at the Naval Research Laboratory (NRL) in Washington, D.c), exploits the fact that the electrical resistance of some materials changes in the presence of magnetic field— a phenomenon known as magneto- resistance. For some multi-layered materials this effect is particularly powerful and is, accordingly, called “giant” magneto-resistance (GMR). Since 1997, the exploitation of GMR has made cheap multi-gigabyte hard disks commonplace. The magnetic orientations of the magnetised spots on the surface of a spinning disk are detected by measuring the changes they induce in the resistance of a tiny sensor. This technique is so sensitive that it means the spots can be made smaller and packed closer together than was previously possible, thus increasing the capacity and reducing the size and cost of a disk drive. Dr. Prinz and his colleagues are now exploiting the same phenomenon on the surface of memory chips, rather spinning disks. In a conventional memory chip, each binary digit (bit) of data is represented using a capacitor-reservoir of electrical charge that is either empty or fill -to represent a zero or a one. In the NRL’s magnetic design, by contrast, each bit is stored in a magnetic element in the form of a vertical pillar of magnetisable material. A matrix of wires passing above and below the elements allows each to be magnetised, either clockwise or anti-clockwise, to represent zero or one. Another set of wires allows current to pass through any particular element. By measuring an element’s resistance you can determine its magnetic orientation, and hence whether it is storing a zero or a one. Since the elements retain their magnetic orientation even when the power is off, the result is non-volatile memory. Unlike the elements of an electronic memory, a magnetic memory’s elements are not easily disrupted by radiation. And compared with electronic memories, whose capacitors need constant topping up, magnetic memories are simpler and consume less power. The NRL researchers plan to commercialise their device through a company called Non-V olatile Electronics, which recently began work on the necessary processing and fabrication techniques. But it will be some years before the first chips roll off the production line.Most attention in the field in focused on an alternative approach based on magnetic tunnel-junctions (MTJs), which are being investigated by researchers at chipmakers such as IBM, Motorola, Siemens and Hewlett-Packard. IBM’s research team, led by Stuart Parkin, has already created a 500-element working prototype that operates at 20 times the speed of conventional memory chips and consumes 1% of the power. Each element consists of a sandwich of two layers of magnetisable material separated by a barrier of aluminium oxide just four or five atoms thick. The polarisation of lower magnetisable layer is fixed in one direction, but that of the upper layer can be set (again, by passing a current through a matrix of control wires) either to the left or to the right, to store a zero or a one. The polarisations of the two layers are then either the same or opposite directions.Although the aluminum-oxide barrier is an electrical insulator, it is so thin that electrons are able to jump across it via a quantum-mechanical effect called tunnelling. It turns out that such tunnelling is easier when the two magnetic layers are polarised in the same direction than when they are polarised in opposite directions. So, by measuring the current that flows through the sandwich, it is possible to determine the alignment of the topmost layer, and hence whether it is storing a zero or a one.To build a full-scale memory chip based on MTJs is, however, no easy matter. According to Paulo Freitas, an expert on chip manufacturing at the Technical University of Lisbon, magnetic memory elements will have to become far smaller and more reliable than current prototypes if they are to compete with electronic memory. At the same time, they will have to be sensitive enough to respond when the appropriate wires in the control matrix are switched on, but not so sensitive that they respond when a neighbouring elements is changed. Despite these difficulties, the general consensus is that MTJs are the more promising ideas. Dr. Parkin says his group evaluated the GMR approach and decided not to pursue it, despite the fact that IBM pioneered GMR in hard disks. Dr. Prinz, however, contends that his plan will eventually offer higher storage densities and lower production costs.Not content with shaking up the multi-billion-dollar market for computer memory, some researchers have even more ambitious plans for magnetic computing. In a paper published last month in Science, Russell Cowburn and Mark Well and of Cambridge University outlined research that could form the basis of a magnetic microprocessor — a chip capable of manipulating (rather than merely storing) information magnetically. In place of conducting wires, a magnetic processor would have rows of magnetic dots, each of which could be polarised in one of two directions. Individual bits of information would travel down the rows as magnetic pulses, changing the orientation of the dots as they went. Dr. Cowbum and Dr. Welland have demonstrated how a logic gate (the basic element of a microprocessor) could work in such a scheme. In their experiment, they fed a signal in at one end of the chain of dots and used a second signal to control whether it propagated along the chain.It is, admittedly, a long way from a single logic gate to a full microprocessor, but this was true also when the transistor was first invented. Dr. Cowburn, who is now searching for backers to help commercialise the technology, says he believes it will be at least ten years before the first magnetic microprocessor is constructed. But other researchers in the field agree that such a chip, is the next logical step. Dr. Prinz says that once magnetic memory is sorted out “the target is to go after the logic circuits.” Whether all-magnetic computers will ever be able to compete with other contenders that are jostling to knock electronics off its perch — such as optical, biological and quantum computing — remains to be seen. Dr. Cowburn suggests that the future lies with hybrid machines that use different technologies. But computing with magnetism evidently has an attraction all its own.In developing magnetic memory chips to replace the electronic ones, two alternative research paths are being pursued. These are approaches based on:
 ....
MCQ-> Read the following passage carefully and answer the questions given at the end.The movement to expel the Austrians from Italy and unite Italy under a republican government had been gaining momentum while Garibaldi was away. There was a growing clamour, not just from Giuseppe Mazzini's republicans, but from moderates as well, for a General capable of leading Italy to independence. Even the King of Piedmont, for whom Garibaldi was still an outlaw under sentence of death, subscribed to an appeal for a sword for the returning hero. Meanwhile, the 'year of revolutions', 1848, had occurred in which Louis Philippe had been toppled from the French throne. In Austria, an uprising triggered off insurrections in Venice and Milan, and the Austrian garrisons were forced out. The King of Piedmont, Charles Albert ordered his troops to occupy these cities. There had also been insurrections in Sicily, causing the King Ferdinand II, to grant major constitutional freedoms in 1849, prompting both the Pope and Charles Albert to grant further concessions.Meanwhile, largely ignorant of these developments, Garibaldi was approaching Italy at a leisurely pace, arriving at Nice on 23 June 1848 to a tumultuous reception. The hero declared himself willing to fight and lay down his life for Charles Albert, who he now regarded as a bastion of Italian nationalism.Mazzini and the republicans were horrified, regarding this as outright betrayal: did it reflect Garibaldi's innate simple-mindedness, his patriotism in the war against Austria, or was it part of a deal with the monarchy? Charles Albert had pardoned Garibaldi, but to outward appearances he was still very wary of the General and the Italian Legion he had amassed of 150 'brigands'. The two men met near Mantua, and the King appeared to dislike him instantly. He suggested that Garibaldi's men should join his army and that Garibaldi should go to Venice and captain a ship as a privateer against the Austrians.Garibaldi, meanwhile, met his former hero Mazzini for the first time, and again the encounter was frosty. Seemingly rebuffed on all sides, Garibaldi considered going to Sicily to fight King Ferdinand II of Naples, but changed his mind when the Milanese offered him the post of General - something they badly needed when Charles Albert's Piedmontese army was defeated at Custoza by the Austrians. With around 1,000 men, Garibaldi marched into the mountains at Varese, commenting bitterly: 'The King of Sardinia may have a crown that he holds on to by dint of misdeeds and cowardice, but my comrades and I do not wish to hold on to our lives by shameful actions'.The King of Piedmont offered an armistice to the Austrians and all the gains in northern Italy were lost again. Garibaldi returned to Nice and then across to Genoa, where he learned that, in September 1848, Ferdinand II had bombed Messina as a prelude to invasion - an atrocity which caused him to be dubbed 'King Bomba'. Reaching Livorno he was diverted yet again and set off across the Italian peninsula with 350 men to come to Venice's assistance, but on the way, in Bologna, he learned that the Pope had taken refuge with King Bomba. Garibaldi promptly altered course southwards towards Rome where he was greeted once again as a hero. Rome proclaimed itself a Republic. Garibaldi's Legion had swollen to nearly 1,300 men, and the Grand Duke of Tuscany fled Florence before the advancing republican force.However, the Austrians marched southwards to place the Grand Duke of Tuscany back on his throne. Prince Louis Napoleon of France despatched an army of 7,000 men under General Charles Oudinot to the port of Civitavecchia to seize the city. Garibaldi was appointed as a General to defend Rome.The republicans had around 9,000 men, and Garibaldi was given control of more than 4,000 to defend the Janiculum Hill, which was crucial to the defence of Rome, as it commanded the city over the Tiber. Some 5,000 well-equipped French troops arrived on 30 April 1849 at Porta Cavallegeri in the old walls of Rome, but tailed to get through, and were attacked from behind by Garibaldi, who led a baton charge and was grazed by a bullet slightly on his side. The French lost 500 dead and wounded, along with some 350 prisoners, to the Italians, 200 dead and wounded. It was a famous victory, wildly celebrated by the Romans into the night, and the French signed a tactical truce.However, other armies were on the march: Bomba's 12,500-strong Neapolitan army was approaching from the south, while the Austrians had attacked Bologna in the north. Garibaldi too, a force out of Rome and engaged in a flanking movement across the Neapolitan army's rear at Castelli Romani; the Neapolitans attacked and were driven off leaving 50 dead. Garibaldi accompanied the Roman General, Piero Roselli, in an attack on the retreating Neapolitan army. Foolishly leading a patrol of his men right out in front of his forces, he tried to stop a group of his cavalry retreating and fell under their horses, with the enemy slashing at him with their sabres. He was rescued by his legionnaires, narrowly having avoided being killed, but Roselli had missed the chance to encircle the Neapolitan army.Garibaldi boldly wanted to carry the fight down into the Kingdom of Naples, but Mazzini, who by now was effectively in charge of Rome, ordered him back to the capital to face the danger of Austrian attack from the north. In fact, it was the French who arrived on the outskirts of Rome first, with an army now reinforced by 30,000. Mazzini realized that Rome could not resist and ordered a symbolic stand within the city itself, rather than surrender, for the purposes of international propaganda and to keep the struggle alive, whatever the cost. On 3 June the French arrived in force and seized the strategic country house, Villa Pamphili.Garibaldi rallied his forces and fought feverishly to retake the villa up narrow and steep city streets, capturing it, then losing it again. By the end of the day, the sides had 1,000 dead between them. Garibaldi once again had been in the thick of the fray, giving orders to his troops and - fighting, it was said, like a lion. Although beaten 'off for the moment, the French imposed a siege in the morning, starving the city of provisions and bombarding its beautiful centre.On 30 June the French attacked again in force, while Garibaldi, at the head of his troops, fought back ferociously. But there was no prospect of holding the French off indefinitely, and Garibaldi, decided to take his men out of the city to continue resistance in the mountains. Mazzini fled to Britain while Garibaldi remained to fight for the cause. He had just 4,000 men, divided into two legions, and faced some 17,000 Austrians and Tuscans in the north, 30,000 Neapolitans and Spanish in the south, and 40,000 French in the west. He was being directly pursued by 8,000 French and was approaching Neapolitan and Spanish divisions of some 18,000 men. He stood no chance whatever. The rugged hill country was ideal, however, for his style of irregular guerrilla warfare, and he manoeuvred skilfully, marching and counter-marching in different directions, confounding his pursuers before finally aiming for Arezzo in the north. But his men were deserting in droves and local people were hostile to his army: he was soon reduced to 1500 men who struggled across the high mountain passes to San Marino where he found temporary. refuge.The Austrians, now approaching, demanded that he go into exile in America. He was determined to fight on and urged the ill and pregnant Anita, his wife, to stay behind in San Marino, but she would not hear of it. The pair set off with 200 loyal soldiers along the mountain tracks to the Adriatic coast, from where Garibaldi intended to embark for Venice which was still valiantly holding out against the Austrians. They embarked aboard 13 fishing boats and managed to sail to within 50 miles of the Venetian lagoon before being spotted by an Austrian flotilla and fired upon.Only two of Garibaldi's boats escaped. He carried Anita through the shallows to a beach and they moved further inland. The ailing Anita was placed in a cart and they reached a farmhouse, where she died. Her husband broke down into inconsolable wailing and she was buried in a shallow grave near the farmhouse, but was transferred to a churchyard a few days later. Garibaldi had no time to lose; he and his faithful companion Leggero escaped across the Po towards Ravenna.At last Garibaldi was persuaded to abandon his insane attempts to reach Venice by sea and to return along less guarded routes on the perilous mountain paths across the Apennines towards the western coast of Italy. He visited his family in Nice for an emotional reunion with his mother and his three children - but lacked the courage to tell them what had happened to their mother.Find the correct statement:
 ....
MCQ-> The current debate on intellectual property rights (IPRs) raises a number of important issues concerning the strategy and policies for building a more dynamic national agricultural research system, the relative roles of public and private sectors, and the role of agribusiness multinational corporations (MNCs). This debate has been stimulated by the international agreement on Trade Related Intellectual Property Rights (TRIPs), negotiated as part of the Uruguay Round. TRIPs, for the first time, seeks to bring innovations in agricultural technology under a new worldwide IPR regime. The agribusiness MNCs (along with pharmaceutical companies) played a leading part in lobbying for such a regime during the Uruguay Round negotiations. The argument was that incentives are necessary to stimulate innovations, and that this calls for a system of patents which gives innovators the sole right to use (or sell/lease the right to use) their innovations for a specified period and protects them against unauthorised copying or use. With strong support of their national governments, they were influential in shaping the agreement on TRIPs, which eventually emerged from the Uruguay Round. The current debate on TRIPs in India - as indeed elsewhere - echoes wider concerns about ‘privatisation’ of research and allowing a free field for MNCs in the sphere of biotechnology and agriculture. The agribusiness corporations, and those with unbounded faith in the power of science to overcome all likely problems, point to the vast potential that new technology holds for solving the problems of hunger, malnutrition and poverty in the world. The exploitation of this potential should be encouraged and this is best done by the private sector for which patents are essential. Some, who do not necessarily accept this optimism, argue that fears of MNC domination are exaggerated and that farmers will accept their products only if they decisively outperform the available alternatives. Those who argue against agreeing to introduce an IPR regime in agriculture and encouraging private sector research are apprehensive that this will work to the disadvantage of farmers by making them more and more dependent on monopolistic MNCs. A different, though related apprehension is that extensive use of hybrids and genetically engineered new varieties might increase the vulnerability of agriculture to outbreaks of pests and diseases. The larger, longer-term consequences of reduced biodiversity that may follow from the use of specially bred varieties are also another cause for concern. Moreover, corporations, driven by the profit motive, will necessarily tend to underplay, if not ignore, potential adverse consequences, especially those which are unknown and which may manifest themselves only over a relatively long period. On the other hand, high-pressure advertising and aggressive sales campaigns by private companies can seduce farmers into accepting varieties without being aware of potential adverse effects and the possibility of disastrous consequences for their livelihood if these varieties happen to fail. There is no provision under the laws, as they now exist, for compensating users against such eventualities. Excessive preoccupation with seeds and seed material has obscured other important issues involved in reviewing the research policy. We need to remind ourselves that improved varieties by themselves are not sufficient for sustained growth of yields. in our own experience, some of the early high yielding varieties (HYVs) of rice and wheat were found susceptible to widespread pest attacks; and some had problems of grain quality. Further research was necessary to solve these problems. This largely successful research was almost entirely done in public research institutions. Of course, it could in principle have been done by private companies, but whether they choose to do so depends crucially on the extent of the loss in market for their original introductions on account of the above factors and whether the companies are financially strong enough to absorb the ‘losses’, invest in research to correct the deficiencies and recover the lost market. Public research, which is not driven by profit, is better placed to take corrective action. Research for improving common pool resource management, maintaining ecological health and ensuring sustainability is both critical and also demanding in terms of technological challenge and resource requirements. As such research is crucial to the impact of new varieties, chemicals and equipment in the farmer’s field, private companies should be interested in such research. But their primary interest is in the sale of seed materials, chemicals, equipment and other inputs produced by them. Knowledge and techniques for resource management are not ‘marketable’ in the same way as those inputs. Their application to land, water and forests has a long gestation and their efficacy depends on resolving difficult problems such as designing institutions for proper and equitable management of common pool resources. Public or quasi-public research institutions informed by broader, long-term concerns can only do such work. The public sector must therefore continue to play a major role in the national research system. It is both wrong and misleading to pose the problem in terms of public sector versus private sector or of privatisation of research. We need to address problems likely to arise on account of the public-private sector complementarity, and ensure that the public research system performs efficiently. Complementarity between various elements of research raises several issues in implementing an IPR regime. Private companies do not produce new varieties and inputs entirely as a result of their own research. Almost all technological improvement is based on knowledge and experience accumulated from the past, and the results of basic and applied research in public and quasi-public institutions (universities, research organisations). Moreover, as is increasingly recognised, accumulated stock of knowledge does not reside only in the scientific community and its academic publications, but is also widely diffused in traditions and folk knowledge of local communities all over. The deciphering of the structure and functioning of DNA forms the basis of much of modern biotechnology. But this fundamental breakthrough is a ‘public good’ freely accessible in the public domain and usable free of any charge. Various techniques developed using that knowledge can however be, and are, patented for private profit. Similarly, private corporations draw extensively, and without any charge, on germplasm available in varieties of plants species (neem and turmeric are by now famous examples). Publicly funded gene banks as well as new varieties bred by public sector research stations can also be used freely by private enterprises for developing their own varieties and seek patent protection for them. Should private breeders be allowed free use of basic scientific discoveries? Should the repositories of traditional knowledge and germplasm be collected which are maintained and improved by publicly funded organisations? Or should users be made to pay for such use? If they are to pay, what should be the basis of compensation? Should the compensation be for individuals or (or communities/institutions to which they belong? Should individual institutions be given the right of patenting their innovations? These are some of the important issues that deserve more attention than they now get and need serious detailed study to evolve reasonably satisfactory, fair and workable solutions. Finally, the tendency to equate the public sector with the government is wrong. The public space is much wider than government departments and includes co- operatives, universities, public trusts and a variety of non-governmental organisations (NGOs). Giving greater autonomy to research organisations from government control and giving non- government public institutions the space and resources to play a larger, more effective role in research, is therefore an issue of direct relevance in restructuring the public research system.Which one of the following statements describes an important issue, or important issues, not being raised in the context of the current debate on IPRs?
 ....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions