1. An enzyme that recognizes foreign DNA, and results in a cut in that DNA is called





Write Comment

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->The environment variable in Linux , that contain a list of directories the shell automatically recognizes:....
QA->Short cut key for cut an object or text”....
QA->The loss of elasticity of muscles results in a disease called?....
QA->The act of blood clotting when one gets cut to stop the bleeding is called ?....
QA->Inter-relationship of DNA; RNA and Protein commonly called ?....
MCQ->An enzyme that recognizes foreign DNA, and results in a cut in that DNA is called....
MCQ-> The story begins as the European pioneers crossed the Alleghenies and started to settle in the Midwest. The land they found was covered with forests. With incredible efforts they felled the trees, pulled the stumps and planted their crops in the rich, loamy soil. When they finally reached the western edge of the place we now call Indiana, the forest stopped and ahead lay a thousand miles of the great grass prairie. The Europeans were puzzled by this new environment. Some even called it the “Great Desert”. It seemed untillable. The earth was often very wet and it was covered with centuries of tangled and matted grasses. With their cast iron plows, the settlers found that the prairie sod could not be cut and the wet earth stuck to their plowshares. Even a team of the best oxen bogged down after a few years of tugging. The iron plow was a useless tool to farm the prairie soil. The pioneers were stymied for nearly two decades. Their western march was hefted and they filled in the eastern regions of the Midwest.In 1837, a blacksmith in the town of Grand Detour, Illinois, invented a new tool. His name was John Deere and the tool was a plow made of steel. It was sharp enough to cut through matted grasses and smooth enough to cast off the mud. It was a simple too, the “sod buster” that opened the great prairies to agricultural development.Sauk Country, Wisconsin is the part of that prairie where I have a home. It is named after the Sauk Indians. In i673 Father Marquette was the first European to lay his eyes upon their land. He found a village laid out in regular patterns on a plain beside the Wisconsin River. He called the place Prairie du Sac) The village was surrounded by fields that had provided maize, beans and squash for the Sauk people for generations reaching back into the unrecorded time.When the European settlers arrived at the Sauk prairie in 1837, the government forced the native Sank people west of the Mississippi River. The settlers came with John Deere’s new invention and used the tool to open the area to a new kind of agriculture. They ignored the traditional ways of the Sank Indians and used their sod-busting tool for planting wheat. Initially, the soil was generous and the nurturing thrived. However each year the soil lost more of its nurturing power. It was only thirty years after the Europeans arrived with their new technology that the land was depleted, Wheat farming became uneconomic and tens of thousands of farmers left Wisconsin seeking new land with sod to bust.It took the Europeans and their new technology just one generation to make their homeland into a desert. The Sank Indians who knew how to sustain themselves on the Sauk prairie land were banished to another kind of desert called a reservation. And they even forgot about the techniques and tools that had sustained them on the prairie for generations unrecorded. And that is how it was that three deserts were created — Wisconsin, the reservation and the memories of a people. A century later, the land of the Sauks is now populated by the children of a second wave of European tanners who learned to replenish the soil through the regenerative powers of dairying, ground cover crops and animal manures. These third and fourth generation farmers and townspeople do not realise, however, that a new settler is coming soon with an invention as powerful as John Deere’s plow.The new technology is called ‘bereavement counselling’. It is a tool forged at the great state university, an innovative technique to meet the needs of those experiencing the death of a loved one, tool that an “process” the grief of the people who now live on the Prairie of the Sauk. As one can imagine the final days of the village of the Sauk Indians before the arrival of the settlers with John Deere’s plow, one can also imagine these final days before the arrival of the first bereavement counsellor at Prairie du Sac) In these final days, the farmers arid the townspeople mourn at the death of a mother, brother, son or friend. The bereaved is joined by neighbours and kin. They meet grief together in lamentation, prayer and song. They call upon the words of the clergy and surround themselves in community.It is in these ways that they grieve and then go on with life. Through their mourning they are assured of the bonds between them and renewed in the knowledge that this death is a part of the Prairie of the Sauk. Their grief is common property, an anguish from which the community draws strength and gives the bereaved the courage to move ahead.It is into this prairie community that the bereavement counsellor arrives with the new grief technology. The counsellor calls the invention a service and assures the prairie folk of its effectiveness and superiority by invoking the name of the great university while displaying a diploma and certificate. At first, we can imagine that the local people will be puzzled by the bereavement counsellor’s claim, However, the counsellor will tell a few of them that the new technique is merely o assist the bereaved’s community at the time of death. To some other prairie folk who are isolated or forgotten, the counsellor will approach the Country Board and advocate the right to treatment for these unfortunate souls. This right will be guaranteed by the Board’s decision to reimburse those too poor tc pay for counselling services. There will be others, schooled to believe in the innovative new tools certified by universities and medical centres, who will seek out the bereavement counsellor by force of habit. And one of these people will tell a bereaved neighbour who is unschooled that unless his grief is processed by a counsellor, he will probably have major psychological problems in later life. Several people will begin to use the bereavement counsellor because, since the Country Board now taxes them to insure access to the technology, they will feel that to fail to be counselled is to waste their money, and to be denied a benefit, or even a right.Finally, one day, the aged father of a Sauk woman will die. And the next door neighbour will not drop by because he doesn’t want to interrupt the bereavement counsellor. The woman’s kin will stay home because they will have learned that only the bereavement counsellor knows how to process grief the proper way. The local clergy will seek technical assistance from the bereavement counsellor to learn the connect form of service to deal with guilt and grief. And the grieving daughter will know that it is the bereavement counsellor who really cares for her because only the bereavement counsellor comes when death visits this family on the Prairie of the Sauk.It will be only one generation between the bereavement counsellor arrives and the community of mourners disappears. The counsellor’s new tool will cut through the social fabric, throwing aside kinship, care, neighbourly obligations and communality ways cc coming together and going on. Like John Deere’s plow, the tools of bereavement counselling will create a desert we a community once flourished, And finally, even the bereavement counsellor will see the impossibility of restoring hope in clients once they are genuinely alone with nothing but a service for consolation. In the inevitable failure of the service, the bereavement counsellor will find the deserts even in herself.Which one of the following best describes the approach of the author?
 ....
MCQ-> People are continually enticed by such "hot" performance, even if it lasts for brief periods. Because of this susceptibility, brokers or analysts who have had one or two stocks move up sharply, or technicians who call one turn correctly, are believed to have established a credible record and can readily find market followings. Likewise, an advisory service that is right for a brief time can beat its drums loudly. Elaine Garzarelli gained near immortality when she purportedly "called" the 1987 crash. Although, as the market strategist for Shearson Lehman, her forecast was never published in a research report, nor indeed communicated to its clients, she still received widespread recognition and publicity for this call, which was made in a short TV interview on CNBC. Still, her remark on CNBC that the Dow could drop sharply from its then 5300 level rocked an already nervous market on July 23, 1996. What had been a 40-point gain for the Dow turned into a 40-point loss, a good deal of which was attributed to her comments.The truth is, market-letter writers have been wrong in their judgments far more often than they would like to remember. However, advisors understand that the public considers short-term results meaningful when they are, more often than not, simply chance. Those in the public eye usually gain large numbers of new subscribers for being right by random luck. Which brings us to another important probability error that falls under the broad rubric of representativeness. Amos Tversky and Daniel Kahneman call this one the "law of small numbers.". The statistically valid "law of large numbers" states that large samples will usually be highly representative of the population from which they are drawn; for example, public opinion polls are fairly accurate because they draw on large and representative groups. The smaller the sample used, however (or the shorter the record), the more likely the findings are chance rather than meaningful. Yet the Tversky and Kahneman study showed that typical psychological or educational experimenters gamble their research theories on samples so small that the results have a very high probability of being chance. This is the same as gambling on the single good call of an advisor. The psychologists and educators are far too confident in the significance of results based on a few observations or a short period of time, even though they are trained in statistical techniques and are aware of the dangers.Note how readily people over generalize the meaning of a small number of supporting facts. Limited statistical evidence seems to satisfy our intuition no matter how inadequate the depiction of reality. Sometimes the evidence we accept runs to the absurd. A good example of the major overemphasis on small numbers is the almost blind faith investors place in governmental economic releases on employment, industrial production, the consumer price index, the money supply, the leading economic indicators, etc. These statistics frequently trigger major stock- and bond-market reactions, particularly if the news is bad. Flash statistics, more times than not, are near worthless. Initial economic and Fed figures are revised significantly for weeks or months after their release, as new and "better" information flows in. Thus, an increase in the money supply can turn into a decrease, or a large drop in the leading indicators can change to a moderate increase. These revisions occur with such regularity you would think that investors, particularly pros, would treat them with the skepticism they deserve. Alas, the real world refuses to follow the textbooks. Experience notwithstanding, investors treat as gospel all authoritative-sounding releases that they think pinpoint the development of important trends. An example of how instant news threw investors into a tailspin occurred in July of 1996. Preliminary statistics indicated the economy was beginning to gain steam. The flash figures showed that GDP (gross domestic product) would rise at a 3% rate in the next several quarters, a rate higher than expected. Many people, convinced by these statistics that rising interest rates were imminent, bailed out of the stock market that month. To the end of that year, the GDP growth figures had been revised down significantly (unofficially, a minimum of a dozen times, and officially at least twice). The market rocketed ahead to new highs to August l997, but a lot of investors had retreated to the sidelines on the preliminary bad news. The advice of a world champion chess player when asked how to avoid making a bad move. His answer: "Sit on your hands”. But professional investors don't sit on their hands; they dance on tiptoe, ready to flit after the least particle of information as if it were a strongly documented trend. The law of small numbers, in such cases, results in decisions sometimes bordering on the inane. Tversky and Kahneman‘s findings, which have been repeatedly confirmed, are particularly important to our understanding of some stock market errors and lead to another rule that investors should follow.Which statement does not reflect the true essence of the passage? I. Tversky and Kahneman understood that small representative groups bias the research theories to generalize results that can be categorized as meaningful result and people simplify the real impact of passable portray of reality by small number of supporting facts. II. Governmental economic releases on macroeconomic indicators fetch blind faith from investors who appropriately discount these announcements which are ideally reflected in the stock and bond market prices. III. Investors take into consideration myopic gain and make it meaningful investment choice and fail to see it as a chance of occurrence. IV. lrrational overreaction to key regulators expressions is same as intuitive statistician stumbling disastrously when unable to sustain spectacular performance.....
MCQ-> The current debate on intellectual property rights (IPRs) raises a number of important issues concerning the strategy and policies for building a more dynamic national agricultural research system, the relative roles of public and private sectors, and the role of agribusiness multinational corporations (MNCs). This debate has been stimulated by the international agreement on Trade Related Intellectual Property Rights (TRIPs), negotiated as part of the Uruguay Round. TRIPs, for the first time, seeks to bring innovations in agricultural technology under a new worldwide IPR regime. The agribusiness MNCs (along with pharmaceutical companies) played a leading part in lobbying for such a regime during the Uruguay Round negotiations. The argument was that incentives are necessary to stimulate innovations, and that this calls for a system of patents which gives innovators the sole right to use (or sell/lease the right to use) their innovations for a specified period and protects them against unauthorised copying or use. With strong support of their national governments, they were influential in shaping the agreement on TRIPs, which eventually emerged from the Uruguay Round. The current debate on TRIPs in India - as indeed elsewhere - echoes wider concerns about ‘privatisation’ of research and allowing a free field for MNCs in the sphere of biotechnology and agriculture. The agribusiness corporations, and those with unbounded faith in the power of science to overcome all likely problems, point to the vast potential that new technology holds for solving the problems of hunger, malnutrition and poverty in the world. The exploitation of this potential should be encouraged and this is best done by the private sector for which patents are essential. Some, who do not necessarily accept this optimism, argue that fears of MNC domination are exaggerated and that farmers will accept their products only if they decisively outperform the available alternatives. Those who argue against agreeing to introduce an IPR regime in agriculture and encouraging private sector research are apprehensive that this will work to the disadvantage of farmers by making them more and more dependent on monopolistic MNCs. A different, though related apprehension is that extensive use of hybrids and genetically engineered new varieties might increase the vulnerability of agriculture to outbreaks of pests and diseases. The larger, longer-term consequences of reduced biodiversity that may follow from the use of specially bred varieties are also another cause for concern. Moreover, corporations, driven by the profit motive, will necessarily tend to underplay, if not ignore, potential adverse consequences, especially those which are unknown and which may manifest themselves only over a relatively long period. On the other hand, high-pressure advertising and aggressive sales campaigns by private companies can seduce farmers into accepting varieties without being aware of potential adverse effects and the possibility of disastrous consequences for their livelihood if these varieties happen to fail. There is no provision under the laws, as they now exist, for compensating users against such eventualities. Excessive preoccupation with seeds and seed material has obscured other important issues involved in reviewing the research policy. We need to remind ourselves that improved varieties by themselves are not sufficient for sustained growth of yields. in our own experience, some of the early high yielding varieties (HYVs) of rice and wheat were found susceptible to widespread pest attacks; and some had problems of grain quality. Further research was necessary to solve these problems. This largely successful research was almost entirely done in public research institutions. Of course, it could in principle have been done by private companies, but whether they choose to do so depends crucially on the extent of the loss in market for their original introductions on account of the above factors and whether the companies are financially strong enough to absorb the ‘losses’, invest in research to correct the deficiencies and recover the lost market. Public research, which is not driven by profit, is better placed to take corrective action. Research for improving common pool resource management, maintaining ecological health and ensuring sustainability is both critical and also demanding in terms of technological challenge and resource requirements. As such research is crucial to the impact of new varieties, chemicals and equipment in the farmer’s field, private companies should be interested in such research. But their primary interest is in the sale of seed materials, chemicals, equipment and other inputs produced by them. Knowledge and techniques for resource management are not ‘marketable’ in the same way as those inputs. Their application to land, water and forests has a long gestation and their efficacy depends on resolving difficult problems such as designing institutions for proper and equitable management of common pool resources. Public or quasi-public research institutions informed by broader, long-term concerns can only do such work. The public sector must therefore continue to play a major role in the national research system. It is both wrong and misleading to pose the problem in terms of public sector versus private sector or of privatisation of research. We need to address problems likely to arise on account of the public-private sector complementarity, and ensure that the public research system performs efficiently. Complementarity between various elements of research raises several issues in implementing an IPR regime. Private companies do not produce new varieties and inputs entirely as a result of their own research. Almost all technological improvement is based on knowledge and experience accumulated from the past, and the results of basic and applied research in public and quasi-public institutions (universities, research organisations). Moreover, as is increasingly recognised, accumulated stock of knowledge does not reside only in the scientific community and its academic publications, but is also widely diffused in traditions and folk knowledge of local communities all over. The deciphering of the structure and functioning of DNA forms the basis of much of modern biotechnology. But this fundamental breakthrough is a ‘public good’ freely accessible in the public domain and usable free of any charge. Various techniques developed using that knowledge can however be, and are, patented for private profit. Similarly, private corporations draw extensively, and without any charge, on germplasm available in varieties of plants species (neem and turmeric are by now famous examples). Publicly funded gene banks as well as new varieties bred by public sector research stations can also be used freely by private enterprises for developing their own varieties and seek patent protection for them. Should private breeders be allowed free use of basic scientific discoveries? Should the repositories of traditional knowledge and germplasm be collected which are maintained and improved by publicly funded organisations? Or should users be made to pay for such use? If they are to pay, what should be the basis of compensation? Should the compensation be for individuals or (or communities/institutions to which they belong? Should individual institutions be given the right of patenting their innovations? These are some of the important issues that deserve more attention than they now get and need serious detailed study to evolve reasonably satisfactory, fair and workable solutions. Finally, the tendency to equate the public sector with the government is wrong. The public space is much wider than government departments and includes co- operatives, universities, public trusts and a variety of non-governmental organisations (NGOs). Giving greater autonomy to research organisations from government control and giving non- government public institutions the space and resources to play a larger, more effective role in research, is therefore an issue of direct relevance in restructuring the public research system.Which one of the following statements describes an important issue, or important issues, not being raised in the context of the current debate on IPRs?
 ....
MCQ-> Read the passage given below and answer the questions that follow:-Brazil is a top exporter of every commodity that has seen dizzying price surges - iron ore, soybeans, sugar - producing a golden age for economic growth Foreign money-flows into Brazilian stocks and bonds climbed heavenward, up more than tenfold, from $5 billion a year in early 2007 to more than $50 billion in the twelve months through March 2011.The flood of foreign money buying up Brazilian assets has made the currency one of the most expensive in the world, and Brazil one of the most costly, overhyped economies. Almost every major emerging- market currency has strengthened against the dollar over the last decade, but the Brazilian Real is on a path alone, way above the pack, having doubled in value against the dollar.Economists have all kinds of fancy ways to measure the real value of a currency, but when a country is pricing itself this far out of the competition, you can feel it on the ground. In early 2011 the major Rio paper, 0 Globo, ran a story on prices showing that croissants are more expensive than they are in Paris, haircuts cost more than they do in London, bike rentals are more expensive than in Amsterdam, and movie tickets sell for higher prices than in Madrid. A rule of the road: if the local prices in an emerging market country feel expensive even to a visitor from a rich nation, that country is probably not a breakout nation.There is no better example of how absurd it is to lump all the big emerging markets together than the frequent pairing of Brazil and China. Those who make this comparison are referring only to the fact that they are the biggest players in their home regions, not to the way the economies actually run. Brazil is the world‘s leading exporter of many raw materials, and China is the leading importer; that makes them major trade partners - China surpassed the United States as Brazil's leading trade partner in 2009 f but it also makes them opposites in almost every important economic respect: Brazil is the un-China, with interest rates that are too high, and a currency that is too expensive. It spends too little on roads and too much on welfare, and as a result has a very un-China-like growth record.It may not be entirely fair to compare economic growth in Brazil with that of its Asian counterparts, because Brazil has a per capita income of $12,000, more than two times China's and nearly ten times India's. But even taking into account the fact that it is harder for rich nations to grow quickly, Brazil's growth has been disappointing. Since the early 19805 the Brazilian growth rate has oscillated around an average of 2.5 percent, spiking only in concert with increased prices for Brazil's key commodity exports. While China has been criticized for pursuing "growth at any cost," Brazil has sought to secure "stability at any cost." Brazil's caution stems from its history of financial crises, in which overspending produced debt, humiliating defaults, and embarrassing devaluations, culminating in a disaster that is still recent enough to be fresh in every Brazilian adult's memory: the hyperinflation that started in the early 19805 and peaked in 1994, at the vertiginous annual rate of 2,100 percent.Wages were pegged to inflation but were increased at varying intervals in different industries, 50 workers never really knew whether they were making good money or not. As soon as they were paid, they literally ran to the store with cash to buy food, and they could afford little else, causing non-essential industries to start to die. Hyperinflation finally came under control in l995, but it left a problem of regular behind. Brazil has battled inflation ever since by maintaining one of the highest interest rates in the emerging world. Those high rates have attracted a surge of foreign money, which is partly why the Brazilian Real is so expensive relative to comparable currencies.There is a growing recognition that China faces serious "imbalances" that could derail its long economic boom. Obsessed until recently with high growth, China has been pushing too hard to keep its currency too cheap (to help its export industries compete), encouraging excessively high savings and keeping interest rates rock bottom to fund heavy spending on roads and ports. China is only now beginning to consider a shift in spending priorities to create social programs that protect its people from the vicissitudes of old age and unemployment.Brazil’s economy is just as badly out of balance, though in opposite ways. While China has introduced reforms relentlessly for three decades, opening itself up to the world even at the risk of domestic instability, Brazil has pushed reforms only in the most dire circumstances, for example, privatizing state companies when the government budget is near collapse. Fearful of foreign shocks, Brazil is still one of the most closed economies in the emerging world - total imports and exports account for only 15 percent of GDP - despite its status as the world's leading exporter of sugar, orange juice, coffee, poultry, and beef.To pay for its big government, Brazil has jacked up taxes and now has a tax burden that equals 38 percent of GDP, the highest in the emerging world, and very similar to the tax burden in developed European welfare states, such as Norway and France. This heavy load of personal and corporate tax on a relatively poor country means that businesses don’t have the money to invest in new technology or training, which in turn means that industry is not getting more efficient. Between 1986 and 2008 Brazil’s productivity grew at an annual rate of :about 0.2 percent, compared to 4 percent in China. Over the same period, productivity grew in India at close to 3 percent and in South Korea and Thailand at close to 2 percent. According to the passage, the major concern facing the Brazil economy is:
 ....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions