1. In a certain code language, "RAIN" is written as "45" and "GOOD" is written as "44". How is "DROP" written in that code language?





Write Comment

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Show Similar Question And Answers
QA->In a certain code SUNDAY is coded as USDNYA. How could CREATION be written in that code?....
QA->Why does the velocity of rain drop attain constant value?....
QA->If PROMOTION is written in certain coded message as QSp89 then what will be the code for DEMOTION?....
QA->The gas combines with rain water and acid rain :....
QA->Just as I……………. on my rain coat the rain stopped. ....
MCQ-> If translated into English, most of the ways economists talk among themselves would sound plausible enough to poets, journalists, businesspeople, and other thoughtful though non-economical folk. Like serious talk anywhere — among boat desingers and baseball fans, say — the talk is hard to follow when one has not made a habit of listening to it for a while. The culture of the conversation makes the words arcane. But the people in the unfamiliar conversation are not Martians. Underneath it all (the economist’s favourite phrase) conversational habits are similar. Economics uses mathematical models and statistical tests and market arguments, all of which look alien to the literary eye. But looked at closely they are not so alien. They may be seen as figures of speech-metaphors, analogies, and appeals to authority.Figures of speech are not mere frills. They think for us. Someone who thinks of a market as an ‘invisible hand’ and the organization of work as a ‘production function’ and his coefficients as being ‘significant’, as an economist does, is giving the language a lot of responsibility. It seems a good idea to look hard at his language.If the economic conversation were found to depend a lot on its verbal forms, this would not mean that economics would be not a science, or just a matter of opinion, or some sort of confidence game. Good poets, though not scientists, are serious thinkers about symbols; good historians, though not scientists, are serious thinkers about data. Good scientists also use language. What is more (though it remains to be shown) they use the cunning of language, without particularly meaning to. The language used is a social object, and using language is a social act. It requires cunning (or, if you prefer, consideration), attention to the other minds present when one speaks.The paying of attention to one’s audience is called ‘rhetoric’, a word that I later exercise hard. One uses rhetoric, of course, to warn of a fire in a theatre or to arouse the xenophobia of the electorate. This sort of yelling is the vulgar meaning of the word, like the president’s ‘heated rhetoric’ in a press conference or the ‘mere rhetoric’ to which our enemies stoop. Since the Greek flame was lit, though, the word has been used also in a broader and more amiable sense, to mean the study of all the ways of accomplishing things with language: inciting a mob to lynch the accused, to be sure, but also persuading readers of a novel that its characters breathe, or bringing scholars to accept the better argument and reject the worse.The question is whether the scholar- who usually fancies himself an announcer of ‘results’ or a stater of ‘conclusions’ free of rhetoric — speaks rhetorically. Does he try to persuade? It would seem so. Language, I just said, is not a solitary accomplishment. The scholar doesn’t speak into the void, or to himself. He speaks to a community of voices. He desires to be heeded, praised, published, imitated, honoured, en-Nobeled. These are the desires. The devices of language are the means. Rhetoric is the proportioning of means to desires in speech.Rhetoric is an economics of language, the study of how scarce means are allocated to the insatiable desires of people to be heard. It seems on the face of it a reasonable hypothesis that economists are like other people in being talkers, who desire listeners whey they go to the library or the laboratory as much as when they go to the office or the polls. The purpose here is to see if this is true, and to see if it is useful: to study the rhetoric of economic scholarship.The subject is scholarship. It is not the economy, or the adequacy of economic theory as a description of the economy, or even mainly the economist’s role in the economy. The subject is the conversation economists have among themselves, for purposes of persuading each other that the interest elasticity of demand for investment is zero or that the money supply is controlled by the Federal Reserve.Unfortunately, though, the conclusions are of more than academic interest. The conversations of classicists or of astronomers rarely affect the lives of other people. Those of economists do so on a large scale. A well known joke describes a May Day parade through Red Square with the usual mass of soldiers, guided missiles, rocket launchers. At last come rank upon rank of people in gray business suits. A bystander asks, “Who are those?” “Aha!” comes the reply, ”those are economists: you have no idea what damage they can do!” Their conversations do it.According to the passage, which of the following is the best set of reasons for which one needs to ‘look hard’ at an economist’s language?A. Economists accomplish a great deal through their language.B. Economics is an opinion-based subject.C. Economics has a great impact on other’s lives.D. Economics is damaging.
 ....
MCQ-> Language is not a cultural artifact that we learn the way we learn to tell time or how the federal government works. Instead, it is a distinct piece of the biological makeup of our brains. Language is a complex, specialized skill, which develops in the child spontaneously, without conscious effort or formal instruction, is deployed without awareness of its underlying logic, is qualitatively the same in every individual, and is distinct from more general abilities to process information or behave intelligently. For these reasons some cognitive scientists have described language as a psychological faculty, a mental organ, a neural system, and a computational module. But I prefer the admittedly quaint term “instinct”. It conveys the idea that people know how to talk in more or less the sense that spiders know how to spin webs. Web-spinning was not invented by some unsung spider genius and does not depend on having had the right education or on having an aptitude for architecture or the construction trades. Rather, spiders spin spider webs because they have spider brains, which give them the urge to spin and the competence to succeed. Although there are differences between webs and words, I will encourage you to see language in this way, for it helps to make sense of the phenomena we will explore. Thinking of language as an instinct inverts the popular wisdom, especially as it has been passed down in the canon of the humanities and social sciences. Language is no more a cultural invention than is upright posture. It is not a manifestation of a general capacity to use symbols: a three-year-old, we shall see, is a grammatical genius, but is quite incompetent at the visual arts, religious iconography, traffic signs, and the other staples of the semiotics curriculum. Though language is a magnificent ability unique to Homo sapiens among living species, it does not call for sequestering the study of humans from the domain of biology, for a magnificent ability unique to a particular living species is far from unique in the animal kingdom. Some kinds of bats home in on flying insects using Doppler sonar. Some kinds of migratory birds navigate thousands of miles by calibrating the positions of the constellations against the time of day and year. In nature’s talent show, we are simply a species of primate with our own act, a knack for communicating information about who did what to whom by modulating the sounds we make when we exhale. Once you begin to look at language not as the ineffable essence of human uniqueness hut as a biological adaptation to communicate information, it is no longer as tempting to see language as an insidious shaper of thought, and, we shall see, it is not. Moreover, seeing language as one of nature’s engineering marvels — an organ with “that perfection of structure and co-adaptation which justly excites our admiration,” in Darwin’s words - gives us a new respect for your ordinary Joe and the much-maligned English language (or any language). The complexity of language, from the scientist’s point of view, is part of our biological birthright; it is not something that parents teach their children or something that must be elaborated in school — as Oscar Wilde said, “Education is an admirable thing, but it is well to remember from time to time that nothing that is worth knowing can be taught.” A preschooler’s tacit knowledge of grammar is more sophisticated than the thickest style manual or the most state-of-the-art computer language system, and the same applies to all healthy human beings, even the notorious syntaxfracturing professional athlete and the, you know, like, inarticulate teenage skateboarder. Finally, since language is the product of a wellengineered biological instinct, we shall see that it is not the nutty barrel of monkeys that entertainercolumnists make it out to be.According to the passage, which of the following does not stem from popular wisdom on language?
 ....
MCQ-> The second plan to have to examine is that of giving to each person what she deserves. Many people, especially those who are comfortably off, think this is what happens at present: that the industrious and sober and thrifty are never in want, and that poverty is due to idleness, improvidence, drinking, betting, dishonesty, and bad character generally. They can point to the fact that a labour whose character is bad finds it more difficult to get employment than one whose character is good; that a farmer or country gentleman who gambles and bets heavily, and mortgages his land to live wastefully and extravagantly, is soon reduced to poverty; and that a man of business who is lazy and does not attend to it becomes bankrupt. But this proves nothing that you cannot eat your cake and have it too; it does not prove that your share of the cake was a fair one. It shows that certain vices make us rich. People who are hard, grasping, selfish, cruel, and always ready to take advantage of their neighbours, become very rich if they are clever enough not to overreach themselves. On the other hand, people who are generous, public spirited, friendly, and not always thinking of the main chance, stay poor when they are born poor unless they have extraordinary talents. Also as things are today, some are born poor and others are born with silver spoons in their mouths: that is to say, they are divided into rich and poor before they are old enough to have any character at all. The notion that our present system distributes wealth according to merit, even roughly, may be dismissed at once as ridiculous. Everyone can see that it generally has the contrary effect; it makes a few idle people very rich, and a great many hardworking people very poor.On this, intelligent Lady, your first thought may be that if wealth is not distributed according to merit, it ought to be; and that we should at once set to work to alter our laws so that in future the good people shall be rich in proportion to their goodness and the bad people poor in proportion to their badness. There are several objections to this; but the very first one settles the question for good and all. It is, that the proposal is impossible and impractical. How are you going to measure anyone's merit in money? Choose any pair of human beings you like, male or female, and see whether you can decide how much each of them should have on her or his merits. If you live in the country, take the village blacksmith and the village clergyman, or the village washerwoman and the village schoolmistress, to begin with. At present, the clergyman often gets less pay than the blacksmith; it is only in some villages he gets more. But never mind what they get at present: you are trying whether you can set up a new order of things in which each will get what he deserves. You need not fix a sum of money for them: all you have to do is to settle the proportion between them. Is the blacksmith to have as much as the clergyman? Or twice as much as the clergyman? Or half as much as the clergyman? Or how much more or less? It is no use saying that one ought to have more the other less; you must be prepared to say exactly how much more or less in calculable proportion.Well, think it out. The clergyman has had a college education; but that is not any merit on his part: he owns it to his father; so you cannot allow him anything for that. But through it he is able to read the New Testament in Greek; so that he can do something the blacksmith cannot do. On the other hand, the blacksmith can make a horse-shoe, which the parson cannot. How many verses of the Greek Testament are worth one horse-shoe? You have only to ask the silly question to see that nobody can answer it.Since measuring their merits is no use, why not try to measure their faults? Suppose the blacksmith swears a good deal, and gets drunk occasionally! Everybody in the village knows this; but the parson has to keep his faults to himself. His wife knows them; but she will not tell you what they are if she knows that you intend to cut off some of his pay for them. You know that as he is only a mortal human being, he must have some faults; but you cannot find them out. However, suppose he has some faults he is a snob; that he cares more for sport and fashionable society than for religion! Does that make him as bad as the blacksmith, or twice as bad, or twice and quarter as bad, or only half as bad? In other words, if the blacksmith is to have a shilling, is the parson to have six pence, or five pence and one-third, or two shillings? Clearly these are fools' questions: the moment they bring us down from moral generalities to business particulars it becomes plain to every sensible person that no relation can be established between human qualities, good or bad, and sums of money, large or small.It may seem scandalous that a prize-fighter, for hitting another prize-fighter so hard at Wembley that he fell down and could not rise within ten seconds, received the same sum that was paid to the Archbishop of Canterbury for acting as Primate of the Church of England for nine months; but none of those who cry out against the scandal can express any better in money the difference between the two. Not one of the persons who think that the prize-fighter should get less than the Archbishop can say how much less. What the prize- fighter got for his six or seven months' boxing would pay a judge's salary for two years; and we all agree that nothing could be more ridiculous, and that any system of distributing wealth which leads to such absurdities must be wrong. But to suppose that it could be changed by any possible calculation that an ounce of archbishop of three ounces of judge is worth a pound of prize-fighter would be sillier still. You can find out how many candles are worth a pound of butter in the market on any particular day; but when you try to estimate the worth of human souls the utmost you can say is that they are all of equal value before the throne of God:And that will not help you in the least to settle how much money they should have. You must simply give it up, and admit that distributing money according to merit is beyond mortal measurement and judgement.Which of the following is not a vice attributed to the poor by the rich?
 ....
MCQ->In a certain code language, "RAIN" is written as "45" and "GOOD" is written as "44". How is "DROP" written in that code language?....
MCQ-> Read passage carefully. Answer the questions by selecting the most appropriate option (with reference to the passage). PASSAGE 4While majoring in computer science isn't a requirement to participate in the Second Machine Age, what skills do liberal arts graduates specifically possess to contribute to this brave new world? Another major oversight in the debate has been the failure to appreciate that a good liberal arts education teaches many skills that are not only valuable to the general world of business, but are in fact vital to innovating the next wave of breakthrough tech-driven products and services. Many defenses of the value of a liberal arts education have been launched, of course, with the emphasis being on the acquisition of fundamental thinking and communication skills, such as critical thinking, logical argumentation, and good communication skills. One aspect of liberal arts education that has been strangely neglected in the discussion is the fact that the humanities and social sciences are devoted to the study of human nature and the nature of our communities and larger societies. Students who pursue degrees in the liberal arts disciplines tend to be particularly motivated to investigate what makes us human: how we behave and why we behave as we do. They're driven to explore how our families and our public institutions-such as our schools and legal systems-operate, and could operate better, and how governments and economies work, or as is so often the case, are plagued by dysfunction. These students learn a great deal from their particular courses of study and apply that knowledge to today's issues, the leading problems to be tackled, and various approaches for analyzing and addressing those problems. The greatest opportunities for innovation in the emerging era are in applying evolving technological capabilities to finding better ways to solve human problems like social dysfunction and political corruption; finding ways to better educate children; helping people live healthier and happier lives by altering harmful behaviors; improving our working conditions; discovering better ways to tackle poverty; Improving healthcare and making it more affordable; making our governments more accountable, from the local level up to that of global affairs; and finding optimal ways to incorporate intelligent, nimble machines into our work lives so that we are empowered to do more of the work that we do best, and to let the machines do the rest. Workers with a solid liberal arts education have a strong foundation to build on in pursuing these goals. One of the most immediate needs in technology innovation is to invest products and services with more human qualities. with more sensitivity to human needs and desires. Companies and entrepreneurs that want to succeed today and in the future must learn to consider in all aspects of their product and service creation how they can make use of the new technologies to make them more humane. Still, many other liberal arts disciplines also have much to provide the world of technological innovation. The study of psychology, for example, can help people build products that are more attuned to our emotions and ways of thinking. Experience in Anthropology can additionally help companies understand cultural and individual behavioural factors that should be considered in developing products and in marketing them. As technology allows for more machine intelligence and our lives become increasingly populated by the Internet of things and as the gathering of data about our lives and analysis of it allows for more discoveries about our behaviour, consideration of how new products and services can be crafted for the optimal enhancement of our lives and the nature of our communities, workplaces and governments will be of vital importance. Those products and services developed with the keeneSt sense of how they' can serve our human needs and complement our human talents will have a distinct competitive advantage. Much of the criticism of the liberal arts is based on the false assumption that liberal arts students lack rigor in comparison to those participating in the STEM disciplines and that they are 'soft' and unscientific whereas those who study STEM fields learn the scientific method. In fact the liberal arts teach many methods of rigorous inquiry and analysis, such as close observation and interviewing in ways that hard science adherents don't always appreciate. Many fields have long incorporated the scientific method and other types of data driven scientific inquiry and problem solving. Sociologists have developed sophisticated mathematical models of societal networks. Historians gather voluminous data on centuries-old household expenses, marriage and divorce rates, and the world trade, and use data to conduct statistical analyses, identifying trends and contributing factors to the phenomena they are studying. Linguists have developed high-tech models of the evolution of language, and they've made crucial contributions to the development of one of the technologies behind the rapid advance of automation- natural language processing, whereby computers are able to communicate with the, accuracy and personality of Siri and Alexa. It's also important to debunk the fallacy that liberal arts students who don't study these quantitative analytical methods have no 'hard' or relevant skills. This gets us back to the arguments about the fundamental ways of thinking, inquiring, problem solving and communicating that a liberal arts education teaches.What is the central theme of the passage?
 ....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions