1. Some girls can do a piece of work in 18 days. In how much time (in days) two times the number of such girls will complete thrice of the work?





Write Comment

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

  • By: anil on 05 May 2019 02.04 am
    Let total work to be done = $$w$$ units Time taken by $$n$$ girls to complete the work = 18 days Let time taken by $$2n$$ girls to complete $$3w$$ units = $$d$$ days Using, $$frac{M_1D_1}{W_1}$$ $$=frac{M_2D_2}{W_2}$$ => $$frac{n imes18}{w}=frac{2n imes d}{3w}$$ => $$d=18 imesfrac{3}{2}=27$$ days => Ans - (B)
Show Similar Question And Answers
QA->Anil can do a work in 12 days. Basheer can do it in 15 days. Chandran can do the same work in 20 days. If they all work together, the number of days need to complete the work is :....
QA->When A, B, C are work together they complete a job in 8 days. When A and C decided to do the work together they completed this job in 12 days. In how many days B alone can complete the work?....
QA->A and B can do a work in 10 days, B and C can do it in 12 days, C and A can do it in 15 days. If A, B, and C work together, they will complete the work in :....
QA->A and B can do a work in 12 days. B and C together can do it in 15 days and C and A together in 20 days. If A, B, C work together, they will complete the work in ?....
QA->A and B can do a work in 12 days. B and C together can do it in 15 days and C and A together in 20 days. If A, B, C work together, they will complete the work in :....
MCQ-> Read the following passage carefully and answer the questions. Certain words/phrases are given in bold to help you locate them while answering some of the questions. Until the 1960s boys spent longer and went further in school than girls, and were more likely to graduate from university. Now, across the rich world and in a growing number of , poor countries, the balance has tilted the other way. Policymakers once fretted about girls’ . lack of confidence in science but this is changing. Sweden has commissioned research into its “boy crisis”. Australia has devised a reading programme called “Boys, Blokes, Books and Bytes”. In just a couple of generations, one gender gap has closed, only for another to open up. The reversal is laid out in a report published on March 5th by the OECD. a Paris based Rich country thinktank. Boys’ dominance just about endures in maths: at age 15 they are, on average, the equivalent of three months’ schooling ahead of girls. In science the results are fairly even. But in reading, where girls have been ahead for some time, a gulf has appeared. In all G4 countries and economies in the study, girls outperform boys. The average gap is equivalent to an extra year of schooling. The OECD deems literacy to be the most important skill that it assesses, since further learning depends on it. Sure enough, teenage boys are 50% more likely than girls to fail to achieve basic proficiency in any of maths, reading and science. Youngsters in this group, with nothing to build on or shine at, are prone to drop out of school altogether. To see why boys and girls fare so differently in the classroom, first look at what they do outside it. The average 15year old girl devotes five and half hours a week to homework, an hour more than the average boy, who spend more time playing video games and trawling the internet. Three quarters of girls read for pleasure, compared with little more than half of boys. Reading rates are falling everywhere as screens draw eyes from pages, but boys are giving up faster. The OECD found that, among boys who do as much homework as the average girl, the gender gap in reading fell by nearly a quarter. Once in the classroom, boys long to be out of it: They are twice as likely as girls to report that school is a “waste of time”, and more often turn up late. Just as a teacher sused to struggle to persuade girls that science is not only for men, the OECD now urges parents and policymakers to steer boys away from a version of masculinity that ignores academic achievement. Boys’ disdain for school might have been less irrational when there were plenty of jobs for uneducated men. But those days have long gone. It may be that a bit of swagger helps in maths, where confidence plays a part in boys’ lead (though it sometimes extends to delusion:12% of boys told the OECD that they are familiar with the mathematical concept of “subjunctive sealing”, a red herring that fooled only 7% of girls.) But their lack of self Visit discipline drives teachers crazy. The OECD found that boys did much better in its anonymised tests than in teachers assessments. What is behind this discrimination? One possibility is that teachers mark up students who are polite, eager and stay out of flights, all attributes that are more common among girls. In some countries, academic points can even be docked for bad behaviour.Choose the word which is opposite in meaning to the word DOCKED given in bold as used in the passage.
 ....
MCQ-> Have you ever come across a painting, by Picasso, Mondrian, Miro, or any other modern abstract painter of this century, and found yourself engulfed in a brightly coloured canvas which your senses cannot interpret? Many people would tend to denounce abstractionism as senseless trash. These people are disoriented by Miro's bright, fanciful creatures and two- dimensional canvases. They click their tongues and shake their heads at Mondrian's grid works, declaring the poor guy played too many scrabble games. They silently shake their heads in sympathy for Picasso, whose gruesome, distorted figures must be a reflection of his mental health. Then, standing in front of a work by Charlie Russell, the famous Western artist, they'll declare it a work of God. People feel more comfortable with something they can relate to and understand immediately without too much thought. This is the case with the work of Charlie Russell. Being able to recognize the elements in his paintings - trees, horses and cowboys - gives people a safety line to their world of "reality". There are some who would disagree when I say abstract art requires more creativity and artistic talent to produce a good piece than does representational art, but there are many weaknesses in their arguments.People who look down on abstract art have several major arguments to support their beliefs. They feel that artists turn abstract because they are not capable of the technical drafting skills that appear in a Russell; therefore, such artists create an art form that anyone is capable of and that is less time consuming, and then parade it as artistic progress. Secondly, they feel that the purpose of art is to create something of beauty in an orderly, logical composition. Russell's compositions are balanced and rational, everything sits calmly on the canvas, leaving the viewer satisfied that he has seen all there is to see. The modern abstractionists, on the other hand, seem to compose their pieces irrationally. For example, upon seeing Picasso's Guernica, a friend of mine asked me, "What's the point?" Finally, many people feel that art should portray the ideal and real. The exactness of detail in Charlie Russell's work is an example of this. He has been called a great historian because his pieces depict the life style, dress, and events of the times. His subject matter is derived from his own experiences on the trail, and reproduced to the smallest detail.I agree in part with many of these arguments, and at one time even endorsed them. But now, I believe differently. Firstly, I object to the argument that abstract artists are not capable of drafting. Many abstract artists, such as Picasso, are excellent draftsmen. As his work matured, Picasso became more abstract in order to increase the expressive quality of his work. Guernica was meant as a protest against the bombing of that city by the Germans. To express the terror and suffering of the victims more vividly, he distorted the figures and presented them in a black and white journalistic manner. If he had used representational images and colour, much of the emotional content would have been lost and the piece would not have caused the demand for justice that it did. Secondly, I do not think that a piece must be logical and aesthetically pleasing to be art. The message it conveys to its viewers is more important. It should reflect the ideals and issues of its time and be true to itself, not just a flowery, glossy surface. For example, through his work, Mondrian was trying to present a system of simplicity, logic, and rational order. As a result, his pieces did end up looking like a scrabble board.Miro created powerful, surrealistic images from his dreams and subconscious. These artists were trying to evoke a response from society through an expressionistic manner. Finally, abstract artists and representational artists maintain different ideas about 'reality'. To the representational artist, reality is what he sees with his eyes. This is the reality he reproduces on canvas. To the abstract artist, reality is what he feels about what his eyes see. This is the reality he interprets on canvas. This can be illustrated by Mondrian's Trees series. You can actually see the progression from the early recognizable, though abstracted, Trees, to his final Explanation, the grid system.A cycle of abstract and representational art began with the first scratchings of prehistoric man. From the abstractions of ancient Egypt to representational, classical Rome, returning to abstractionism in early Christian art and so on up to the present day, the cycle has been going on. But this day and age may witness its death through the camera. With film, there is no need to produce finely detailed, historical records manually; the camera does this for us more efficiently. Maybe, representational art would cease to exist. With abstractionism as the victor of the first battle, may be a different kind of cycle will be touched off. Possibly, some time in the distant future, thousands of years from now, art itself will be physically non-existent. Some artists today believe that once they have planned and constructed a piece in their mind, there is no sense in finishing it with their hands; it has already been done and can never be duplicated.The author argues that many people look down upon abstract art because they feel that:
 ....
MCQ-> The second plan to have to examine is that of giving to each person what she deserves. Many people, especially those who are comfortably off, think this is what happens at present: that the industrious and sober and thrifty are never in want, and that poverty is due to idleness, improvidence, drinking, betting, dishonesty, and bad character generally. They can point to the fact that a labour whose character is bad finds it more difficult to get employment than one whose character is good; that a farmer or country gentleman who gambles and bets heavily, and mortgages his land to live wastefully and extravagantly, is soon reduced to poverty; and that a man of business who is lazy and does not attend to it becomes bankrupt. But this proves nothing that you cannot eat your cake and have it too; it does not prove that your share of the cake was a fair one. It shows that certain vices make us rich. People who are hard, grasping, selfish, cruel, and always ready to take advantage of their neighbours, become very rich if they are clever enough not to overreach themselves. On the other hand, people who are generous, public spirited, friendly, and not always thinking of the main chance, stay poor when they are born poor unless they have extraordinary talents. Also as things are today, some are born poor and others are born with silver spoons in their mouths: that is to say, they are divided into rich and poor before they are old enough to have any character at all. The notion that our present system distributes wealth according to merit, even roughly, may be dismissed at once as ridiculous. Everyone can see that it generally has the contrary effect; it makes a few idle people very rich, and a great many hardworking people very poor.On this, intelligent Lady, your first thought may be that if wealth is not distributed according to merit, it ought to be; and that we should at once set to work to alter our laws so that in future the good people shall be rich in proportion to their goodness and the bad people poor in proportion to their badness. There are several objections to this; but the very first one settles the question for good and all. It is, that the proposal is impossible and impractical. How are you going to measure anyone's merit in money? Choose any pair of human beings you like, male or female, and see whether you can decide how much each of them should have on her or his merits. If you live in the country, take the village blacksmith and the village clergyman, or the village washerwoman and the village schoolmistress, to begin with. At present, the clergyman often gets less pay than the blacksmith; it is only in some villages he gets more. But never mind what they get at present: you are trying whether you can set up a new order of things in which each will get what he deserves. You need not fix a sum of money for them: all you have to do is to settle the proportion between them. Is the blacksmith to have as much as the clergyman? Or twice as much as the clergyman? Or half as much as the clergyman? Or how much more or less? It is no use saying that one ought to have more the other less; you must be prepared to say exactly how much more or less in calculable proportion.Well, think it out. The clergyman has had a college education; but that is not any merit on his part: he owns it to his father; so you cannot allow him anything for that. But through it he is able to read the New Testament in Greek; so that he can do something the blacksmith cannot do. On the other hand, the blacksmith can make a horse-shoe, which the parson cannot. How many verses of the Greek Testament are worth one horse-shoe? You have only to ask the silly question to see that nobody can answer it.Since measuring their merits is no use, why not try to measure their faults? Suppose the blacksmith swears a good deal, and gets drunk occasionally! Everybody in the village knows this; but the parson has to keep his faults to himself. His wife knows them; but she will not tell you what they are if she knows that you intend to cut off some of his pay for them. You know that as he is only a mortal human being, he must have some faults; but you cannot find them out. However, suppose he has some faults he is a snob; that he cares more for sport and fashionable society than for religion! Does that make him as bad as the blacksmith, or twice as bad, or twice and quarter as bad, or only half as bad? In other words, if the blacksmith is to have a shilling, is the parson to have six pence, or five pence and one-third, or two shillings? Clearly these are fools' questions: the moment they bring us down from moral generalities to business particulars it becomes plain to every sensible person that no relation can be established between human qualities, good or bad, and sums of money, large or small.It may seem scandalous that a prize-fighter, for hitting another prize-fighter so hard at Wembley that he fell down and could not rise within ten seconds, received the same sum that was paid to the Archbishop of Canterbury for acting as Primate of the Church of England for nine months; but none of those who cry out against the scandal can express any better in money the difference between the two. Not one of the persons who think that the prize-fighter should get less than the Archbishop can say how much less. What the prize- fighter got for his six or seven months' boxing would pay a judge's salary for two years; and we all agree that nothing could be more ridiculous, and that any system of distributing wealth which leads to such absurdities must be wrong. But to suppose that it could be changed by any possible calculation that an ounce of archbishop of three ounces of judge is worth a pound of prize-fighter would be sillier still. You can find out how many candles are worth a pound of butter in the market on any particular day; but when you try to estimate the worth of human souls the utmost you can say is that they are all of equal value before the throne of God:And that will not help you in the least to settle how much money they should have. You must simply give it up, and admit that distributing money according to merit is beyond mortal measurement and judgement.Which of the following is not a vice attributed to the poor by the rich?
 ....
MCQ-> The membrane-bound nucleus is the most prominent feature of the eukaryotic cell. Schleiden and Schwann, when setting forth the cell doctrine in the 1830s, considered that it had a central role in growth and development. Their belief has been fully supported even though they had only vague notions as to what that role might be, and how the role was to be expressed in some cellular action. The membraneless nuclear area of the prokaryotic cell, with its tangle of fine threads, is now known to play a similar role.Some cells, like the sieve tubes of vascular plants and the red blood cells of mammals, do not possess nuclei during the greater part of their existence, although they had nuclei when in a less differentiated state. Such cells can no longer divide and their life span is limited Other cells are regularly multinucleate. Some, like the cells of striated muscles or the latex vessels of higher plants, become so through cell fusion. Some, like the unicellular protozoan paramecium, are normally binucleate, one of the nuclei serving as a source of hereditary information for the next generation, the other governing the day-to-day metabolic activities of the cell. Still other organisms, such as some fungi, are multinucleate because cross walls, dividing the mycelium into specific cells, are absent or irregularly present. The uninucleate situation, however, is typical for the vast majority of cells, and it would appear that this is the most efficient and most economical manner of partitioning living substance into manageable units. This point of view is given credence not only by the prevalence of uninucleate cells, but because for each kind of cell there is a ratio maintained between the volume of the nucleus and that of the cytoplasm. If we think of the nucleus as the control centre of the cell, this would suggest that for a given kind of cell performing a given kind of work, one nucleus can ‘take care of’ a specific volume of cytoplasm and keep it in functioning order. In terms of material and energy, this must mean providing the kind of information needed to keep flow of materials and energy moving at the correct rate and in the proper channels. With the multitude of enzymes in the cell, materials and energy can of course be channelled in a multitude of ways; it is the function of some information molecules to make channels of use more preferred than others at any given time. How this regulatory control is exercised is not entirely clear.The nucleus is generally a rounded body. In plant cells, however, where the centre of the cell is often occupied by a large vacuole, the nucleus may be pushed against the cell wall, causing it to assume a lens shape. In some white blood cells, such as polymorphonucleated leukocytes, and in cells of the spinning gland of some insects and spiders, the nucleus is very much lobed The reason for this is not clear, but it may relate to the fact that for a given volume of nucleus, a lobate form provides a much greater surface area for nuclear-cytoplasmic exchanges, possibly affecting both the rate and the amount of metabolic reactions. The nucleus, whatever its shape, is segregated from the cytoplasm by a double membrane, the nuclear envelope, with the two membranes separated from each other by a perinuclear space of varying width. The envelope is absent only during the time of cell division, and then just for a brief period The outer membrane is often continuous with the membranes of the endoplasmic reticulum, a possible retention of an earlier relationship, since the envelope, at least in part, is formed at the end cell division by coalescing fragments of the endoplasmic reticulum. The cytoplasmic side of the nucleus is frequently coated with ribosomes, another fact that stresses the similarity and relation of the nuclear envelope to the endoplasmic reticulum. The inner membrane seems to posses a crystalline layer where it abuts the nucleoplasm, but its function remains to be determined.Everything that passes between the cytoplasm and the nucleus in the eukaryotic cell must transverse the nuclear envelope. This includes some fairly large molecules as well as bodies such as ribosomes, which measure about 25 mm in diameter. Some passageway is, therefore, obviously necessary since there is no indication of dissolution of the nuclear envelope in order to make such movement possible. The nuclear pores appear to be reasonable candidates for such passageways. In plant cells these are irregularly, rather sparsely distributed over the surface of the nucleus, but in the amphibian oocyte, for example, the pores are numerous, regularly arranged, and octagonal and are formed by the fusion of the outer and inner membrane.Which of the following kinds of cells never have a nuclei?
 ....
MCQ-> In a modern computer, electronic and magnetic storage technologies play complementary roles. Electronic memory chips are fast but volatile (their contents are lost when the computer is unplugged). Magnetic tapes and hard disks are slower, but have the advantage that they are non-volatile, so that they can be used to store software and documents even when the power is off.In laboratories around the world, however, researchers are hoping to achieve the best of both worlds. They are trying to build magnetic memory chips that could be used in place of today’s electronics. These magnetic memories would be nonvolatile; but they would also he faster, would consume less power, and would be able to stand up to hazardous environments more easily. Such chips would have obvious applications in storage cards for digital cameras and music- players; they would enable handheld and laptop computers to boot up more quickly and to operate for longer; they would allow desktop computers to run faster; they would doubtless have military and space-faring advantages too. But although the theory behind them looks solid, there are tricky practical problems and need to be overcome.Two different approaches, based on different magnetic phenomena, are being pursued. The first, being investigated by Gary Prinz and his colleagues at the Naval Research Laboratory (NRL) in Washington, D.c), exploits the fact that the electrical resistance of some materials changes in the presence of magnetic field— a phenomenon known as magneto- resistance. For some multi-layered materials this effect is particularly powerful and is, accordingly, called “giant” magneto-resistance (GMR). Since 1997, the exploitation of GMR has made cheap multi-gigabyte hard disks commonplace. The magnetic orientations of the magnetised spots on the surface of a spinning disk are detected by measuring the changes they induce in the resistance of a tiny sensor. This technique is so sensitive that it means the spots can be made smaller and packed closer together than was previously possible, thus increasing the capacity and reducing the size and cost of a disk drive. Dr. Prinz and his colleagues are now exploiting the same phenomenon on the surface of memory chips, rather spinning disks. In a conventional memory chip, each binary digit (bit) of data is represented using a capacitor-reservoir of electrical charge that is either empty or fill -to represent a zero or a one. In the NRL’s magnetic design, by contrast, each bit is stored in a magnetic element in the form of a vertical pillar of magnetisable material. A matrix of wires passing above and below the elements allows each to be magnetised, either clockwise or anti-clockwise, to represent zero or one. Another set of wires allows current to pass through any particular element. By measuring an element’s resistance you can determine its magnetic orientation, and hence whether it is storing a zero or a one. Since the elements retain their magnetic orientation even when the power is off, the result is non-volatile memory. Unlike the elements of an electronic memory, a magnetic memory’s elements are not easily disrupted by radiation. And compared with electronic memories, whose capacitors need constant topping up, magnetic memories are simpler and consume less power. The NRL researchers plan to commercialise their device through a company called Non-V olatile Electronics, which recently began work on the necessary processing and fabrication techniques. But it will be some years before the first chips roll off the production line.Most attention in the field in focused on an alternative approach based on magnetic tunnel-junctions (MTJs), which are being investigated by researchers at chipmakers such as IBM, Motorola, Siemens and Hewlett-Packard. IBM’s research team, led by Stuart Parkin, has already created a 500-element working prototype that operates at 20 times the speed of conventional memory chips and consumes 1% of the power. Each element consists of a sandwich of two layers of magnetisable material separated by a barrier of aluminium oxide just four or five atoms thick. The polarisation of lower magnetisable layer is fixed in one direction, but that of the upper layer can be set (again, by passing a current through a matrix of control wires) either to the left or to the right, to store a zero or a one. The polarisations of the two layers are then either the same or opposite directions.Although the aluminum-oxide barrier is an electrical insulator, it is so thin that electrons are able to jump across it via a quantum-mechanical effect called tunnelling. It turns out that such tunnelling is easier when the two magnetic layers are polarised in the same direction than when they are polarised in opposite directions. So, by measuring the current that flows through the sandwich, it is possible to determine the alignment of the topmost layer, and hence whether it is storing a zero or a one.To build a full-scale memory chip based on MTJs is, however, no easy matter. According to Paulo Freitas, an expert on chip manufacturing at the Technical University of Lisbon, magnetic memory elements will have to become far smaller and more reliable than current prototypes if they are to compete with electronic memory. At the same time, they will have to be sensitive enough to respond when the appropriate wires in the control matrix are switched on, but not so sensitive that they respond when a neighbouring elements is changed. Despite these difficulties, the general consensus is that MTJs are the more promising ideas. Dr. Parkin says his group evaluated the GMR approach and decided not to pursue it, despite the fact that IBM pioneered GMR in hard disks. Dr. Prinz, however, contends that his plan will eventually offer higher storage densities and lower production costs.Not content with shaking up the multi-billion-dollar market for computer memory, some researchers have even more ambitious plans for magnetic computing. In a paper published last month in Science, Russell Cowburn and Mark Well and of Cambridge University outlined research that could form the basis of a magnetic microprocessor — a chip capable of manipulating (rather than merely storing) information magnetically. In place of conducting wires, a magnetic processor would have rows of magnetic dots, each of which could be polarised in one of two directions. Individual bits of information would travel down the rows as magnetic pulses, changing the orientation of the dots as they went. Dr. Cowbum and Dr. Welland have demonstrated how a logic gate (the basic element of a microprocessor) could work in such a scheme. In their experiment, they fed a signal in at one end of the chain of dots and used a second signal to control whether it propagated along the chain.It is, admittedly, a long way from a single logic gate to a full microprocessor, but this was true also when the transistor was first invented. Dr. Cowburn, who is now searching for backers to help commercialise the technology, says he believes it will be at least ten years before the first magnetic microprocessor is constructed. But other researchers in the field agree that such a chip, is the next logical step. Dr. Prinz says that once magnetic memory is sorted out “the target is to go after the logic circuits.” Whether all-magnetic computers will ever be able to compete with other contenders that are jostling to knock electronics off its perch — such as optical, biological and quantum computing — remains to be seen. Dr. Cowburn suggests that the future lies with hybrid machines that use different technologies. But computing with magnetism evidently has an attraction all its own.In developing magnetic memory chips to replace the electronic ones, two alternative research paths are being pursued. These are approaches based on:
 ....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions