1. The Cochin International Airport has recently became the first international airport to operate completely on_________






Write Comment

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Show Similar Question And Answers
QA->International Workers’ Day was observed on_________?....
QA->Cochin International Airport opened in....
QA->Who was the Chief Minister of Cochin at the time of new state of Travancore - Cochin formed?....
QA->When I was posted to the Cochin office after the training in Madras, I asked my Bank in Madras to.............. my account to Cochin. ....
QA->WhichIndian airport has become the first airport in the Asia-Pacific region toachieve carbon neutral status?....
MCQ->The Cochin International Airport has recently became the first international airport to operate completely on_________....
MCQ-> Questions are based on a set of conditions. In answering some of the questions, it may be useful to draw a rough diagram. Choose the response that most accurately and completely answers each question. A BPO has assigned duty to nine operators - Abdulla, Ballal, Chandan, Dogra, Eshita, Falguni, Ganguli, Henri and Indra - on Monday, January 05, 2009 from 00:00 hours. Each operator commences duty at any of the following hours: 00:00 hrs, 04:00 hrs, 08:00 hrs, 12:00 hrs, 16:00 hrs and 20:00 hrs. At any point in time, at least one operator is required, to take clients' calls. Each operator works continuously for eight hours. All operators located at any single location start work simultaneously. The operators took training in five different colleges -Abhiman College, Sutanama College, Gutakal College, Barala College and Khatanama College. These colleges are located in the cities Jamshedpur, Pune, Noida, Hyderabad and Mangalore, not necessarily in that order. The operators operate from the cities where their respective colleges are located. Indra operates alone from a city other than Mangalore and Jamshedpur. Operator(s) trained in Abhiman College will start working at 12:00 hrs. Only Dogra and Falguni operate from Pune, but they are not trained in Gutakal College. Three of the operators took training from Sutanama College, and they operate from Noida. The operator(s) from Jamshedpur will start working at 0:00 hrs. Abdulla and Henri operate together as a two member team from a single location. They do not operate from Mangalore. No operator(s) will join at 20:00 hrs. Ballal, who alone operates from his location, was not trained in Barala College, and will commence his duty four hours after the operator(s) trained in Gutakal College. The operator(s) trained in Barala College operate from Hyderabad. The number of operator(s) trained in Khatanama College is same as the number of operator(s) trained in Barala College.Which of the following statements must be true?
 ....
MCQ-> The controversy over genetically modified food continues unabated in the West. Genetic modification (GM) is the science by which the genetic material of a plant is altered, perhaps to make it more resistant to pests or killer weeds, or to enhance its nutritional value. Many food biotechnologists claim that GM will be a major contribution of science to mankind in the 21st century. On the other hand, large numbers of opponents, mainly in Europe, claim that the benefits of GM are a myth propagated by multinational corporations to increase their profits, that they pose a health hazard, and have therefore called for government to ban the sale of genetically-modified food.The anti-GM campaign has been quite effective in Europe, with several European Union member countries imposing a virtual ban for five years over genetically-modified food imports. Since the genetically-modified food industry is particularly strong in the United States of America, the controversy also constitutes another chapter in the US-Europe skirmishes which have become particularly acerbic after the US invasion of Iraq.To a large extent, the GM controversy has been ignored in the Indian media, although Indian biotechnologists have been quite active in GM research. Several groups of Indian biotechnologists have been working on various issues connected with crops grown in India. One concrete achievement which has recently figured in the news is that of a team led by the former vice-chancellor of Jawaharlal Nehru university, Asis Datta — it has successfully added an extra gene to potatoes to enhance the protein content of the tuber by at least 30 percent. It is quite likely that the GM controversy will soon hit the headlines in India since a spokesperson of the Indian Central government has recently announced that the government may use the protato in its midday meal programme for schools as early as next year.Why should “scientific progress”, with huge potential benefits to the poor and malnourished, be so controversial? The anti-GM lobby contends that pernicious propaganda has vastly exaggerated the benefits of GM and completely evaded the costs which will have to be incurred if the genetically-modified food industry is allowed to grow unchecked. In particular, they allude to different types of costs.This group contends that the most important potential cost is that the widespread distribution and growth of genetically-modified food will enable the corporate world (alias the multinational corporations – MNCs) to completely capture the food chain. A “small” group of biotech companies will patent the transferred genes as well as the technology associated with them. They will then buy up the competing seed merchants and seed-breeding centers, thereby controlling the production of food at every possible level. Independent farmers, big and small, will be completely wiped out of the food industry. At best, they will be reduced to the status of being subcontractors.This line of argument goes on to claim that the control of the food chain will be disastrous for the poor since the MNCs, guided by the profit motive, will only focus on the high-value food items demanded by the affluent. Thus, in the long run, the production of basic staples which constitute the food basket of the poor will taper off. However, this vastly overestimates the power of the MNCs. Even if the research promoted by them does focus on the high-value food items, much of biotechnology research is also funded by governments in both developing and developed countries. Indeed, the protato is a by-product of this type of research. If the protato passes the field trials, there is no reason to believe that it cannot be marketed in the global potato market. And this type of success story can be repeated with other basic food items.The second type of cost associated with the genetically modified food industry is environmental damage. The most common type of “genetic engineering” involved gene modification in plants designed to make them resistant to applications of weed-killers. This then enables farmers to use massive dosages of weedkillers so as to destroy or wipe out all competing varieties of plants in their field. However, some weeds through genetically-modified pollen contamination may acquire resistance to a variety of weed-killers. The only way to destroy these weeds is through the use of ever-stronger herbicides which are poisonous and linger on in the environment.The author doubts the anti-GM lobby’s contention that MNC control of the food chain will be disastrous for the poor because
 ....
MCQ-> Read the following passage carefully and answer the questions given below it. Certain words/phrases have been printed in bold to help you locate them while answering some of the questions. The past quarter of a century has seen several bursts of selling by the world’s governments, mostly but not always in benign market conditions. Those in the OECD, a rich-country club, divested plenty of stuff in the 20 years before the global financial crisis. The first privatisation wave, which built up from the mid-1980s and peaked in 2000, was largely European. The drive to cut state intervention under Margaret Thatcher in Britain soon spread to the continent. The movement gathered pace after 1991, when eastern Europe put thousands of rusting state-owned enterprises (SOEs) on the block. A second wave came in the mid-2000s, as European economies sought to cash in on buoyant markets. But activity in OECD countries slowed sharply as the financial crisis began. In fact, it reversed. Bailouts of failing banks and companies have contributed to a dramatic increase in government purchases of corporate equity during the past five years. A more lasting fea ture is the expansion of the state capitalism practised by China and other emerging economic powers. Governments have actually bought more equity than they have sold in most years since 2007, though sales far exceeded purchases in 2013. Today privatisation is once again “alive and well”, says William Megginson of the Michael Price College of Business at the University of Oklahoma. According to a global tally he recently completed, 2012 was the third-best year ever, and preliminary evidence suggests that 2013 may have been better. However, the geography of sell-offs has changed, with emerging markets now to the fore. China, for instance, has been selling minority stakes in banking, energy, engineering and broadcasting; Brazil is selling airports to help finance a $20 billion investment programme. Eleven of the 20 largest IPOs between 2005 and 2013 were sales of minority stakes by SOEs, mostly in developing countries. By contrast, state-owned assets are now “the forgotten side of the balance-sheet” in many advanced economies, says Dag Detter, managing partner of Whetstone Solutions, an adviser to governments on asset restructuring. They shouldn’t be. Governments of OECD countries still oversee vast piles of assets, from banks and utilities to buildings, land and the riches beneath (see table). Selling some of these holdings could work wonders: reduce debt, finance infrastructure, boost economic efficiency. But governments often barely grasp the value locked up in them. The picture is clearest for companies or company-like entities held by central governments. According to data compiled by the OECD and published on its website, its 34 member countries had 2,111 fully or majority-owned SOEs, with 5.9m employees, at the end of 2012. Their combined value (allowing for some but not all pension-fund liabilities) is estimated at $2.2 trillion, roughly the same size as the global hedge-fund industry. Most are in network industries such as telecoms, electricity and transport. In addition, many countries have large minority stakes in listed firms. Those in which they hold a stake of between 10% and 50% have a combined market value of $890 billion and employ 2.9m people. The data are far from perfect. The quality of reporting varies widely, as do definitions of what counts as a state-owned company: most include only centralgovernment holdings. If all assets held at sub-national level, such as local water companies, were included, the total value could be more than $4 trillion. Reckons Hans Christiansen, an OECD economist. Moreover, his team has had to extrapolate because some QECD members, including America and Japan, provide patchy data. America is apparently so queasy about discussions of public ownership of -commercial assets that the Treasury takes no part in the OECD’s working group on the issue, even though it has vast holdings, from Amtrak and the 520,000-employee Postal Service to power generators and airports. The club’s efforts to calculate the value that SOEs add to, or subtract from, economies were abandoned after several countries, including America, refused to co-operate. Privatisation has begun picking up again recently in the OECD for a variety of reasons. Britain’s Conservative-led coalition is fbcused on (some would say obsessed with) reducing the public debt-to-GDP ratio. Having recently sold the Royal Mail through a public offering, it is hoping to offload other assets, including its stake in URENCO, a uranium enricher, and its student-loan portfolio. From January 8th, under a new Treasury scheme, members of the public and businesses will be allowed to buy government land and buildings on the open market. A website will shortly be set up to help potential buyers see which bits of the government’s /..337 billion-worth of holdings ($527 billion at today’s rate, accounting for 40% of developable sites round Britain) might be surplus. The government, said the chief treasury secretary, Danny Alexander, “should not act as some kind of compulsive hoarder”. Japan has different reasons to revive sell-offs, such as to finance reconstruction after its devastating earthquake and tsunami in 2011. Eyes are once again turning to Japan Post, a giant postal-to-financial-services conglomerate whose oftpostponed partial sale could at last happen in 2015 and raise (Yen) 4 trillion ($40 billion) or more. Australia wants to sell financial, postal and aviation assets to offset the fall in revenues caused by the commodities slowdown. In almost all the countries of Europe, privatisation is likely “to surprise on the upside” as long as markets continue to mend, reckons Mr Megginson. Mr Christiansen expects to see three main areas of activity in coming years. First will be the resumption of partial sell-offs in industries such as telecoms, transport and utilities. Many residual stakes in partly privatised firms could be sold down further. France, for instance, still has hefty stakes in GDF SUEZ, Renault, Thales and Orange. The government of Francois Hollande may be ideologically opposed to privatisation, but it is hoping to reduce industrial stakes to raise funds for livelier sectors, such as broadband and health. The second area of growth should be in eastern Europe, where hundreds of large firms, including manufacturers, remain in state hands. Poland will sell down its stakes in listed firms to make up for an expected reduction in EU structural funds. And the third area is the reprivatisation of financial institutions rescued during the crisis. This process is under way: the largest privatisation in 2012 was the $18 billion offering of America’s residual stake in AIG, an insurance company.Which of the following statements is not true in the context of the given passage ?
 ....
MCQ->A tank has two inlets : A and B. A alone takes 2 hours and B alone takes 3 hours to fill the empty tank completely when there is no leakage. A leakage was caused which would empty the full tank completely in ‘x’ hours when no inlet is open. Now, when only inlet A was opened, it took 3 hours to fill the empty tank completely. How much time will B alone take to fill the empty tank completely? (in hours)....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions