1. Which of the following bodies has started a regional Programme on Doordarshan Named Meena which focuses on the problems of girls ?






Write Comment

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Show Similar Question And Answers
QA->Liz solved 24 maths problems in 15 minutes.At this rate,how many problems can she solve in 40 minutes?....
QA->Aiming toreach out to more viewers in the Northeast, public broadcaster Prasar Bharti isplanning to launch a new Doordarshan channelwhich named as....
QA->The festival " Meena Sankranti," Celebrate in the Indian state?....
QA->The year in which Doordarshan started telecasting in Malayalam is?....
QA->Who is appointed as the New Regional Director of World Health Organization (WHO) South-East Asia Region [South East Asain Regional Organisation/ SEARO] ?....
MCQ-> Read the following passage carefully and answer the questions. Certain words/phrases are given in bold to help you locate them while answering some of the questions. Until the 1960s boys spent longer and went further in school than girls, and were more likely to graduate from university. Now, across the rich world and in a growing number of , poor countries, the balance has tilted the other way. Policymakers once fretted about girls’ . lack of confidence in science but this is changing. Sweden has commissioned research into its “boy crisis”. Australia has devised a reading programme called “Boys, Blokes, Books and Bytes”. In just a couple of generations, one gender gap has closed, only for another to open up. The reversal is laid out in a report published on March 5th by the OECD. a Paris based Rich country thinktank. Boys’ dominance just about endures in maths: at age 15 they are, on average, the equivalent of three months’ schooling ahead of girls. In science the results are fairly even. But in reading, where girls have been ahead for some time, a gulf has appeared. In all G4 countries and economies in the study, girls outperform boys. The average gap is equivalent to an extra year of schooling. The OECD deems literacy to be the most important skill that it assesses, since further learning depends on it. Sure enough, teenage boys are 50% more likely than girls to fail to achieve basic proficiency in any of maths, reading and science. Youngsters in this group, with nothing to build on or shine at, are prone to drop out of school altogether. To see why boys and girls fare so differently in the classroom, first look at what they do outside it. The average 15year old girl devotes five and half hours a week to homework, an hour more than the average boy, who spend more time playing video games and trawling the internet. Three quarters of girls read for pleasure, compared with little more than half of boys. Reading rates are falling everywhere as screens draw eyes from pages, but boys are giving up faster. The OECD found that, among boys who do as much homework as the average girl, the gender gap in reading fell by nearly a quarter. Once in the classroom, boys long to be out of it: They are twice as likely as girls to report that school is a “waste of time”, and more often turn up late. Just as a teacher sused to struggle to persuade girls that science is not only for men, the OECD now urges parents and policymakers to steer boys away from a version of masculinity that ignores academic achievement. Boys’ disdain for school might have been less irrational when there were plenty of jobs for uneducated men. But those days have long gone. It may be that a bit of swagger helps in maths, where confidence plays a part in boys’ lead (though it sometimes extends to delusion:12% of boys told the OECD that they are familiar with the mathematical concept of “subjunctive sealing”, a red herring that fooled only 7% of girls.) But their lack of self Visit discipline drives teachers crazy. The OECD found that boys did much better in its anonymised tests than in teachers assessments. What is behind this discrimination? One possibility is that teachers mark up students who are polite, eager and stay out of flights, all attributes that are more common among girls. In some countries, academic points can even be docked for bad behaviour.Choose the word which is opposite in meaning to the word DOCKED given in bold as used in the passage.
 ....
MCQ-> Answer questions on the basis of information given in the following case. MBA entrance examination comprises two types of problems: formula - based problems and application - based problem. From the analysis of past data, Interesting School of Management (ISM) observes that students good at solving application - based problems are entrepreneurial in nature. Coaching institutes for MBA entrance exams train them to spot formula - based problems and answer them correctly, so as to obtain the required overall cut - off percentile. Thus students, in general, shy away from application - based problem and even those with entrepreneurial mind - set target formula - based problems. Half of a mark is deducted for every wrong answer.ISM wants more students with entrepreneurial mind - set in the next batch. To achieve this, ISM is considering following proposals: I. Preparing a question paper of two parts, Parts A and Part B of duration of one hour each. Part A and Part B would consist of formula - based problems and application - based problems, respectively. After taking away Part A, Part B would be distributed. The qualifying cut - off percentile would be calculated on the combined scores of two parts. II. Preparing a question paper comprising Part A and Part B. While Part A would comprise formula - based problems, Part B would comprise application - based problems, each having a separate qualifying cut - off percentile. III. Assigning one mark for formula - based problems and two marks for application based problems as an incentive for attempting application - based problems. IV. Allotting one mark for formula - based problems and three marks for application - based problem, without mentioning this is the question paper. Which of the following proposal (or combination of proposals) is likely to identify students with best entrepreneurial mind - set?....
MCQ->Which of the following bodies has started a regional Programme on Doordarshan Named Meena which focuses on the problems of girls ?....
MCQ-> A school consisting of a total of 1560 students has boys and girls in the ratio of 7:5 respectively. All the students are enrolled in different types of hobby classes, viz: Singing, Dancing and Painting.One-fifth of the boys are enrolled in only Dancing classes.Twenty percent of the girls are enrolled in only Painting classes.Ten percent of the boys are enrolled in only Singing classes.Twenty four percent of the girls are enrolled in both Singing and Dancing classes together.The number of girls enrolled in only Singing classes is two hundred percent of the boys enrolled in the same.One-thirteenth of the boys are enrolled in all the three classes together.The respective ratio of boys enrolled in Dancing and Painting classes together to the girls enrolled in the same is 2 :1 respectively.Ten percent of the girls are enrolled in only Dancing classes whereas eight percent of the girls are enrolled in both Dancing and Painting classes together.The remaining girls are enrolled in all the three classes together.The number of boys enrolled in Singing and Dancing classes together is fifty percent of the number of girls enrolled in the same.The remaining boys are enrolled in only Painting classes.What is the total number of boys who are enrolled in Dancing ?
 ....
MCQ-> Modern science, exclusive of geometry, is a comparatively recent creation and can be said to have originated with Galileo and Newton. Galileo was the first scientist to recognize clearly that the only way to further our understanding of the physical world was to resort to experiment. However obvious Galileo’s contention may appear in the light of our present knowledge, it remains a fact that the Greeks, in spite of their proficiency in geometry, never seem to have realized the importance of experiment. To a certain extent this may be attributed to the crudeness of their instruments of measurement. Still an excuse of this sort can scarcely be put forward when the elementary nature of Galileo’s experiments and observations is recalled. Watching a lamp oscillate in the cathedral of Pisa, dropping bodies from the leaning tower of Pisa, rolling balls down inclined planes, noticing the magnifying effect of water in a spherical glass vase, such was the nature of Galileo’s experiments and observations. As can be seen, they might just as well have been performed by the Greeks. At any rate, it was thanks to such experiments that Galileo discovered the fundamental law of dynamics, according to which the acceleration imparted to a body is proportional to the force acting upon it.The next advance was due to Newton, the greatest scientist of all time if account be taken of his joint contributions to mathematics and physics. As a physicist, he was of course an ardent adherent of the empirical method, but his greatest title to fame lies in another direction. Prior to Newton, mathematics, chiefly in the form of geometry, had been studied as a fine art without any view to its physical applications other than in very trivial cases. But with Newton all the resources of mathematics were turned to advantage in the solution of physical problems. Thenceforth mathematics appeared as an instrument of discovery, the most powerful one known to man, multiplying the power of thought just as in the mechanical domain the lever multiplied our physical action. It is this application of mathematics to the solution of physical problems, this combination of two separate fields of investigation, which constitutes the essential characteristic of the Newtonian method. Thus problems of physics were metamorphosed into problems of mathematics.But in Newton’s day the mathematical instrument was still in a very backward state of development. In this field again Newton showed the mark of genius by inventing the integral calculus. As a result of this remarkable discovery, problems, which would have baffled Archimedes, were solved with ease. We know that in Newton’s hands this new departure in scientific method led to the discovery of the law of gravitation. But here again the real significance of Newton’s achievement lay not so much in the exact quantitative formulation of the law of attraction, as in his having established the presence of law and order at least in one important realm of nature, namely, in the motions of heavenly bodies. Nature thus exhibited rationality and was not mere blind chaos and uncertainty. To be sure, Newton’s investigations had been concerned with but a small group of natural phenomena, but it appeared unlikely that this mathematical law and order should turn out to be restricted to certain special phenomena; and the feeling was general that all the physical processes of nature would prove to be unfolding themselves according to rigorous mathematical laws.When Einstein, in 1905, published his celebrated paper on the electrodynamics of moving bodies, he remarked that the difficulties, which surrouned the equations of electrodynamics, together with the negative experiments of Michelson and others, would be obviated if we extended the validity of the Newtonian principle of the relativity of Galilean motion, which applies solely to mechanical phenomena, so as to include all manner of phenomena: electrodynamics, optical etc. When extended in this way the Newtonian principle of relativity became Einstein’s special principle of relativity. Its significance lay in its assertion that absolute Galilean motion or absolute velocity must ever escape all experimental detection. Henceforth absolute velocity should be conceived of as physically meaningless, not only in the particular ream of mechanics, as in Newton’s day, but in the entire realm of physical phenomena. Einstein’s special principle, by adding increased emphasis to this relativity of velocity, making absolute velocity metaphysically meaningless, created a still more profound distinction between velocity and accelerated or rotational motion. This latter type of motion remained absolute and real as before. It is most important to understand this point and to realize that Einstein’s special principle is merely an extension of the validity of the classical Newtonian principle to all classes of phenomena.According to the author, why did the Greeks NOT conduct experiments to understand the physical world?
 ....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions