1. Technology no longer protected by copyright, available to everyone, is considered to be:





Write Comment

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->" IN NATURE THERE IS ENOUGH FOR EVERYONE"S NEED,BUT TOO LITTLE FOR EVERYONE"S GREED " WHO SAID THESE....
QA->Everybody wanted to stay longer _____....
QA->The dollar of which country is due to be demonetised (no longer legal tender) by the end of 2015?....
QA->Everybody wanted to stay longer...? ....
QA->Which is the deepest landlocked protected port?....
MCQ-> India is rushing headlong toward economic success and modernisation, counting on high- tech industries such as information technology and biotechnology to propel the nation toprosperity. India’s recent announcement that it would no longer produce unlicensed inexpensive generic pharmaceuticals bowed to the realities of the World TradeOrganisation while at the same time challenging the domestic drug industry to compete with the multinational firms. Unfortunately, its weak higher education sector constitutes the Achilles’ Heel of this strategy. Its systematic disinvestment in higher education inrecent years has yielded neither world-class research nor very many highly trained scholars, scientists, or managers to sustain high-tech development. India’s main competitors especially China but also Singapore, Taiwan, and South Korea — are investing in large and differentiated higher education systems. They are providingaccess to large number of students at the bottom of the academic system while at the same time building some research-based universities that are able to compete with theworld’s best institutions. The recent London Times Higher Education Supplement ranking of the world’s top 200 universities included three in China, three in Hong Kong,three in South Korea, one in Taiwan, and one in India (an Indian Institute of Technology at number 41.— the specific campus was not specified). These countries are positioningthemselves for leadership in the knowledge-based economies of the coming era. There was a time when countries could achieve economic success with cheap labour andlow-tech manufacturing. Low wages still help, but contemporary large-scale development requires a sophisticated and at least partly knowledge-based economy.India has chosen that path, but will find a major stumbling block in its university system. India has significant advantages in the 21st century knowledge race. It has a large high ereducation sector — the third largest in the world in student numbers, after China andthe United States. It uses English as a primary language of higher education and research. It has a long academic tradition. Academic freedom is respected. There are asmall number of high quality institutions, departments, and centres that can form the basis of quality sector in higher education. The fact that the States, rather than the Central Government, exercise major responsibility for higher education creates a rather cumbersome structure, but the system allows for a variety of policies and approaches. Yet the weaknesses far outweigh the strengths. India educates approximately 10 per cent of its young people in higher education compared with more than half in the major industrialised countries and 15 per cent in China. Almost all of the world’s academic systems resemble a pyramid, with a small high quality tier at the top and a massive sector at the bottom. India has a tiny top tier. None of its universities occupies a solid position at the top. A few of the best universities have some excellent departments and centres, and there is a small number of outstanding undergraduate colleges. The University Grants Commission’s recent major support of five universities to build on their recognised strength is a step toward recognising a differentiated academic system and fostering excellence. At present, the world-class institutions are mainly limited to the Indian Institutes of Technology (IITs), the Indian Institutes of Management (IIMs) and perhaps a few others such as the All India Institute of Medical Sciences and the Tata Institute of Fundamental Research. These institutions, combined, enroll well under 1 percent of the student population. India’s colleges and universities, with just a few exceptions, have become large, under-funded, ungovernable institutions. At many of them, politics has intruded into campus life, influencing academic appointments and decisions across levels. Under-investment in libraries, information technology, laboratories, and classrooms makes it very difficult to provide top-quality instruction or engage in cutting-edge research.The rise in the number of part-time teachers and the freeze on new full-time appointments in many places have affected morale in the academic profession. The lackof accountability means that teaching and research performance is seldom measured. The system provides few incentives to perform. Bureaucratic inertia hampers change.Student unrest and occasional faculty agitation disrupt operations. Nevertheless, with a semblance of normality, faculty administrators are. able to provide teaching, coordinate examinations, and award degrees. Even the small top tier of higher education faces serious problems. Many IIT graduates,well trained in technology, have chosen not to contribute their skills to the burgeoning technology sector in India. Perhaps half leave the country immediately upon graduation to pursue advanced study abroad — and most do not return. A stunning 86 per cent of students in science and technology fields from India who obtain degrees in the United States do not return home immediately following their study. Another significant group, of about 30 per cent, decides to earn MBAs in India because local salaries are higher.—and are lost to science and technology.A corps of dedicated and able teachers work at the IlTs and IIMs, but the lure of jobs abroad and in the private sector make it increasingly difficult to lure the best and brightest to the academic profession.Few in India are thinking creatively about higher education. There is no field of higher education research. Those in government as well as academic leaders seem content to do the “same old thing.” Academic institutions and systems have become large and complex. They need good data, careful analysis, and creative ideas. In China, more than two-dozen higher education research centers, and several government agencies are involved in higher education policy.India has survived with an increasingly mediocre higher education system for decades.Now as India strives to compete in a globalized economy in areas that require highly trained professionals, the quality of higher education becomes increasingly important.India cannot build internationally recognized research-oriented universities overnight,but the country has the key elements in place to begin and sustain the process. India will need to create a dozen or more universities that can compete internationally to fully participate in the new world economy. Without these universities, India is destined to remain a scientific backwater.Which of the following ‘statement(s) is/are correct in the context of the given passage ? I. India has the third largest higher education sector in the world in student numbers. II. India is moving rapidly toward economic success and modernisation through high tech industries such as information technology and bitechonology to make the nation to prosperity. III. India’s systematic disinvestment in higher education in recent years has yielded world class research and many world class trained scholars, scientists to sustain high-tech development.....
MCQ->Technology no longer protected by copyright, available to everyone, is considered to be:....
MCQ->Mr. Arbit and Mr. Boring did not invest in the new technology, but the new technology is a big success. Repentant, they are now estimating the additional amount they would have earned ( i.e. forgone earnings) had they invested in the new technology. However, the two owners differed on expected lifespan of the new technology. Mr. Arbit expected lifespan to be 5 years, whereas, Mr. Boring expected it to be 2 years. After the technology gets out - dated, the earnings from the business would drop back to 50,000 million rupees. What would be the difference between two expected foregone earnings after 5 years of the technology investment, if yearly earnings are deposited in a bank @10%, compounded annually? Note: Forgone Earnings = (Earnings from business with new technology) - (Earnings from business without new technology)....
MCQ->The richest Biodiversity in India is found in Copyright www.examrace.comThe richest Biodiversity in India is found in Silent Valley Valley of Kashmir Valley of flowers Damodar Valley Read more at: http://www.examrace.com/SPSC/Chhattisgarh-PSC/CGPSC-Exam-Papers/CGPSC-General-Studies-2011-Solved-Paper-Part-3.htmlCopyright www.examrace.com Copyright www.examrace.comThe richest Biodiversity in India is found in Silent Valley Valley of Kashmir Valley of flowers Damodar Valley Read more at: http://www.examrace.com/SPSC/Chhattisgarh-PSC/CGPSC-Exam-Papers/CGPSC-General-Studies-2011-Solved-Paper-Part-3.htmlCopyright www.examrace.com Copyright www.examrace.comThe richest Biodiversity in India is found in Silent Valley Valley of Kashmir Valley of flowers Damodar Valley Read more at: http://www.examrace.com/SPSC/Chhattisgarh-PSC/CGPSC-Exam-Papers/CGPSC-General-Studies-2011-Solved-Paper-Part-3.htmlCopyright www.examrace.com....
MCQ-> It’s taken me 60 years, but I had an epiphany recently: Everything, without exception, requires additional energy and order to maintain itself. I knew this in the abstract as the famous second law of thermodynamics, which states that everything is falling apart slowly. This realization is not just the lament of a person getting older. Long ago I learnt that even the most inanimate things we know of ―stone, iron columns, copper pipes, gravel roads, a piece of paper ―won’t last very long without attention and fixing and the loan of additional order. Existence, it seems, is chiefly maintenance.What has surprised me recently is how unstable even the intangible is. Keeping a website or a software program afloat is like keeping a yacht afloat It is a black hole for attention. I can understand why a mechanical device like a pump would break down after a while ―moisture rusts metal, or the air oxidizes membranes, or lubricants evaporate, all of which require repair. But I wasn’t thinking that the nonmaterial world of bits would also degrade. What’s to break? Apparently everything.Brand-new computers will ossify. Apps weaken with use. Code corrodes. Fresh software just released will immediately begin to fray. On their own ―nothing you did. The more complex the gear, the more (not less) attention it will require. The natural inclination toward change is inescapable, even for the most abstract entities we know of: bits.And then there is the assault of the changing digital landscape. When everything around you is upgrading, this puts pressure on your digital system and necessitates maintenance. You may not want to upgrade, but you must because everyone else is. It’s an upgrade arms race.I used to upgrade my gear begrudgingly (Why upgrade if it still works?) and at the last possible moment. You know how it goes: Upgrade this and suddenly you need to upgrade that, which triggers upgrades everywhere. I would put it off for years because I had the experiences of one “tiny” upgrade of a minor part disrupting my entire working life. But as our personal technology is becoming more complex, more co-dependents upon peripherals, more like a living ecosystem, delaying upgrading is even more disruptive. If you neglect ongoing minor upgrades, the change backs up so much that the eventual big upgrade reaches traumatic proportions. So I now see upgrading as a type of hygiene: You do it regularly to keep your tech healthy. Continual upgrades are so critical for technological systems that they are now automatic for the major personal computer operating systems and some software apps. Behind the scenes, the machines will upgrade themselves, slowly changing their features over time. This happens gradually, so we don‘t notice they are “becoming.”We take this evolution as normal.Technological life in the future will be a series of endless upgrades. And the rate of graduations is accelerating. Features shift, defaults disappear, menus morph. I’ll open up a software package I don’t use every day expecting certain choices, and whole menus will have disappeared.No matter how long you have been using a tool, endless upgrades make you into a newbie ―the new user often seen as clueless. In this era of “becoming” everyone becomes a newbie. Worse, we will be newbies forever. That should keep us humble.That bears repeating. All of us ―every one of us ―will be endless newbies in the future simply trying to keep up. Here’s why: First, most of the important technologies that will dominate life 30 years from now have not yet been invented, so naturally you’ll be a newbie to them. Second, because the new technology requires endless upgrades, you will remain in the newbie state. Third, because the cycle of obsolescence is accelerating (the average lifespan of a phone app is a mere 30 days!), you won’t have time to master anything before it is displaced, so you will remain in the newbie mode forever. Endless Newbie is the new default for everyone, no matter your age or experience.Which of the following statements would the author agree with the most?
 ....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions