1. The word wrong in spelling among the following





Write Comment

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->The art of spelling words correctly....
QA->Words alike in sound but different in meaning and spelling.....
QA->WhichIndian-American student has won the 90th Scripps Naional Spelling Beecompetition?....
QA->The mis-spelt word among the following:Synonym, Synagogue, Symposiam, Symptom....
QA->The mis-spelt word among the following words.....
MCQ-> Analyse the following passage and provide appropriate answers for the questions that follow: Each piece, or part, of the whole of nature is always merely an approximation to the complete truth, or the complete truth so far as we know it. In fact, everything we know is only some kind of approximation, because we know that we do not know all the laws as yet. Therefore, things must be learned only to be unlearned again or, more likely, to be corrected. The principal of science, the definition, almost, is the following: The test of all knowledge is experiment. Experiment is the sole judge of scientific “truth.” But what is the source of knowledge? Where do the laws that are to be tested come from? Experiment, itself, helps to produce these laws, in the sense that it gives us hints. But also needed is imagination to create from these laws, in the sense that it gives us hints. But also needed is imagination to create from these hints the great generalizations – to guess at the wonderful, simple, but very strange patterns beneath them all, and then to experiment to check again whether we have made the right guess. This imagining process is so difficult that there is a division of labour in physics: there are theoretical physicists who imagine, deduce, and guess at new laws, but do not experiment; and then there are experimental physicists who experiment, imagine, deduce, and guess. We said that the laws of nature are approximate: that we first find the “wrong” ones, and then we find the “right” ones. Now, how can an experiment be “wrong”? First, in a trivial way: the apparatus can be faulty and you did not notice. But these things are easily fixed and checked back and forth. So without snatching at such minor things, how can the results of an experiment be wrong? Only by being inaccurate. For example, the mass of an object never seems to change; a spinning top has the same weight as a still one. So a “law” was invented: mass is constant, independent of speed. That “law” is now found to be incorrect. Mass is found is to increase with velocity, but appreciable increase requires velocities near that of light. A true law is: if an object moves with a speed of less than one hundred miles a second the mass is constant to within one part in a million. In some such approximate form this is a correct law. So in practice one might think that the new law makes no significant difference. Well, yes and no. For ordinary speeds we can certainly forget it and use the simple constant mass law as a good approximation. But for high speeds we are wrong, and the higher the speed, the wrong we are. Finally, and most interesting, philosophically we are completely wrong with the approximate law. Our entire picture of the world has to be altered even though the mass changes only by a little bit. This is a very peculiar thing about the philosophy, or the ideas, behind the laws. Even a very small effect sometimes requires profound changes to our ideas.Which of the following options is DEFINITLY NOT an approximation to the complete truth?
 ....
MCQ->Pick out thể one word for - a secret arrangement....
MCQ->The word wrong in spelling among the following....
MCQ->The spelling dialog box can be involved by choosing spelling from ____ menu.....
MCQ-> Read the following passage carefully and answer the questions given below it. Certain words/phrases have been printed in bold to help you locate them while answering some of the questions. The wisdom of learning from failure is incontrovertible. Yet organisations that do it well are extraordinarily rare. This gap is not due to a lack of commitment to learning. Managers in the vast majority of enterprises that I have studied over the past 20 years —pharmaceutical. financial services, product design, telecommunications, and construction companies: hospitals; and NASA’s space shuttle program, among others— genuinely wanted to help their organisations learn from failures to improve future performance. In some cases they and their teams had devoted many hours to afteraction reviews, postmortems, and the like. But time after time I saw that these painstaking efforts led to no real change. The reason: Those managers were thinking about failure the wrong way. Most executives I’ve talked to believe that failure is bad (of course!). They also believe that learning from it is pretty straightforward: Ask people to reflect on what they did wrong and exhort them to avoid similar mistakes in the future—or, better yet, assign a team to review and write a report on what happened and then distribute it throughout the organisation. These widely held beliefs are misguided. First, failure is not always bad. In organisational life it is sometimes bad, sometimes inevitable, and sometimes even good. Second, learning from organisational failures is anything but straightforward. The attitudes and activities required to effectively detect and analyze failures are in short supply in most companies, and the need for context-specific learning strategies is underappreciated. Or – ganisations need new and better ways to go beyond lessons that are superficial (“Procedures weren’t followed”) or self-serving (“The market just wasn’t ready for our great new product”). That means jettisoning old cultural beliefs and stereotypical notions of success and embracing failure’s lessons. Leaders can begin by understanding how the blame game gets in the way. The Blame Game Failure and fault are virtually inseparable in most households. organisations, and cultures. Every child learns at some point that admitting failure means taking the blame. That is why so few organisations have shifted to a culture of psychological safety in which the rewards of learning from failure can be fully realised. Executives I’ve interviewed in organisations as different as hospitals and investment banks admit to being torn: How can they respond constructively to failures without giving rise to an anything-goes attitude? If people aren’t blamed for failures, what will ensure that they try as hard as possible to do their best work? This concern is based on a false dichotomy. In actuality, a culture that makes it safe to admit and report on failure can—and in some organisational contexts must–coexist with high standards for performance. To understand why, look at the exhibit “A Spectrum of Reasons for Failure,” which lists causes ranging from deliberate deviation to thoughtful experimentation. Which of these causes involve blameworthy actions? Deliberate deviance, first on the list, obviously warrants blame. But inattention might not. If it results from a lack of effort, perhaps it’s blameworthy. But if it results from fatigue near the end of an overly long shift, the manager who assigned the shift is more at fault than the employee. As we go down the list, it gets more and more difficult to find blameworthy acts. In fact, a failure resulting from thoughtful experimentation that generates valuable information may actually be praiseworthy. When I ask executives to consider this spectrum and then to estimate how many of the failures in their organisations are truly blameworthy, their answers are usually in single digits—perhaps 2% to 5%. But when I ask how many are treated as blameworthy, they say (after a pause or a laugh) 70% to 90%. The unfortunate consequence is that many failures go unreported and their lessons are lost. Question : sophisticated understanding of failure’s causes and contexts will help to avoid the blame game and institute an effective strategy for learning from failure. Although an infinite number of things can go wrong in organisations, mistakes fall into three broad categories: preventable, complexity-related, and intelligent.Which of the following statement (s) is/are true in the context of the given passage ? I. Most executives believe that failure is bad and learning from it is pretty straightforward. II. The wisdom of learning from failure is disputable. III. Deliberate deviance, first on the list of the exhibit, “A Spectrum of Reasons for Failure” obviously warrants blame.....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions