1. The mangroves can shed tons of leaves per acre every year fungi and bacteria break down this leaf litter and consume it, they then are consumed by tiny worms and crustaceans, which in turn feed small fish, which feed larger fish and birds and crocodiles. Which among the following is the most logical inference of the above statement?





Write Comment

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->SILK WORMS FEED LEAVES OF WHICH PLANT....
QA->The disease affecting poultry which is caused by the inhalation of fungal spores from hatchery or from the mouldy feed or litter:....
QA->A cyclist goes 40 km towards East and then turning to right he goes 40 km. Again he turn to his left and goes 20 km. After this he turns to his left and goes 40 km, then again turns right and goes 10km. How far is he from his starting point?....
QA->Which of the following figure are equal to one acre?....
QA->Plants which grow luxuriantly in rainy season and shed all leaves in summer are called?....
MCQ->The mangroves can shed tons of leaves per acre every year fungi and bacteria break down this leaf litter and consume it, they then are consumed by tiny worms and crustaceans, which in turn feed small fish, which feed larger fish and birds and crocodiles. Which among the following is the most logical inference of the above statement?....
MCQ-> I think that it would be wrong to ask whether 50 years of India's Independence are an achievement or a failure. It would be better to see things as evolving. It's not an either-or question. My idea of the history of India is slightly contrary to the Indian idea.India is a country that, in the north, outside Rajasthan, was ravaged and intellectually destroyed to a large extent by the invasions that began in about AD 1000 by forces and religions that India had no means of understanding.The invasions are in all the schoolbooks. But I don't think that people understand that every invasion, every war, every campaign, was accompanied by slaughter, a slaughter always of the most talented people in the country. So these wars, apart from everything else led to a tremendous intellectual depletion of the country.I think that in the British period, and in the 50 years after the British period, there has been a kind of regrouping or recovery, a very slow revival of energy and intellect. This isn't an idea that goes with the vision of the grandeur of old India and all that sort of rubbish. That idea is a great simplification and it occurs because it is intellectually, philosophically easier for Indians to manage.What they cannot manage, and what they have not yet come to terms with, is that ravaging of all the north of India by various conquerors. That was ruined not by the act of nature, but by the hand of man. It is so painful that few Indians have begun to deal with it. It is much easier to deal with British imperialism. That is a familiar topic, in India and Britain. What is much less familiar is the ravaging of India before the British.What happened from AD 1000 onwards, really, is such a wound that it is almost impossible to face. Certain wounds are so bad that they can't be written about. You deal with that kind of pain by hiding from it. You retreat from reality. I do not think, for example, that the Incas of Peru or the native people of Mexico have ever got over their defeat by the Spaniards. In both places the head was cut off. I think the pre-British ravaging of India was as bad as that.In the place of knowledge of history, you have various fantasies about the village republic and the Old Glory. There is one big fantasy that Indians have always found solace in: about India having the capacity for absorbing its conquerors. This is not so. India was laid low by its conquerors.I feel the past 150 years have been years of every kind of growth. I see the British period and what has continued after that as one period. In that time, there has been a very slow intellectual recruitment. I think every Indian should make the pilgrimage to the site of the capital of the Vijayanagar empire, just to see what the invasion of India led to. They will see a totally destroyed town. Religious wars are like that. People who see that might understand what the centuries of slaughter and plunder meant. War isn't a game. When you lost that kind of war, your town was destroyed, the people who built the towns were destroyed. You are left with a headless population.That's where modern India starts from. The Vijayanagar capital was destroyed in 1565. It is only now that the surrounding region has begun to revive. A great chance has been given to India to start up again, and I feel it has started up again. The questions about whether 50 years of India since Independence have been a failure or an achievement are not the questions to ask. In fact, I think India is developing quite marvelously, people thought — even Mr Nehru thought — that development and new institutions in a place like Bihar, for instance, would immediately lead to beauty. But it doesn't happen like that. When a country as ravaged as India, with all its layers of cruelty, begins to extend justice to people lower down, it's a very messy business. It's not beautiful, it's extremely messy. And that's what you have now, all these small politicians with small reputations and small parties. But this is part of growth, this is part of development. You must remember that these people, and the people they represent, have never had rights before.When the oppressed have the power to assert themselves, they will behave badly. It will need a couple of generations of security, and knowledge of institutions, and the knowledge that you can trust institutions — it will take at least a couple of generations before people in that situation begin to behave well. People in India have known only tyranny. The very idea of liberty is a new idea. The rulers were tyrants. The tyrants were foreigners. And they were proud of being foreign. There's a story that anybody could run and pull a bell and the emperor would appear at his window and give justice. This is a child's idea of history — the slave's idea of the ruler's mercy. When the people at the bottom discover that they hold justice in their own hands, the earth moves a little. You have to expect these earth movements in India. It will be like this for a hundred years. But it is the only way. It's painful and messy and primitive and petty, but it’s better that it should begin. It has to begin. If we were to rule people according to what we think fit, that takes us back to the past when people had no voices. With self-awareness all else follows. People begin to make new demands on their leaders, their fellows, on themselves.They ask for more in everything. They have a higher idea of human possibilities. They are not content with what they did before or what their fathers did before. They want to move. That is marvellous. That is as it should be. I think that within every kind of disorder now in India there is a larger positive movement. But the future will be fairly chaotic. Politics will have to be at the level of the people now. People like Nehru were colonial — style politicians. They were to a large extent created and protected by the colonial order. They did not begin with the people. Politicians now have to begin with the people. They cannot be too far above the level of the people. They are very much part of the people. It is important that self-criticism does not stop. The mind has to work, the mind has to be active, there has to be an exercise of the mind. I think it's almost a definition of a living country that it looks at itself, analyses itself at all times. Only countries that have ceased to live can say it's all wonderful.The central thrust of the passage is that
 ....
MCQ-> In a modern computer, electronic and magnetic storage technologies play complementary roles. Electronic memory chips are fast but volatile (their contents are lost when the computer is unplugged). Magnetic tapes and hard disks are slower, but have the advantage that they are non-volatile, so that they can be used to store software and documents even when the power is off.In laboratories around the world, however, researchers are hoping to achieve the best of both worlds. They are trying to build magnetic memory chips that could be used in place of today’s electronics. These magnetic memories would be nonvolatile; but they would also he faster, would consume less power, and would be able to stand up to hazardous environments more easily. Such chips would have obvious applications in storage cards for digital cameras and music- players; they would enable handheld and laptop computers to boot up more quickly and to operate for longer; they would allow desktop computers to run faster; they would doubtless have military and space-faring advantages too. But although the theory behind them looks solid, there are tricky practical problems and need to be overcome.Two different approaches, based on different magnetic phenomena, are being pursued. The first, being investigated by Gary Prinz and his colleagues at the Naval Research Laboratory (NRL) in Washington, D.c), exploits the fact that the electrical resistance of some materials changes in the presence of magnetic field— a phenomenon known as magneto- resistance. For some multi-layered materials this effect is particularly powerful and is, accordingly, called “giant” magneto-resistance (GMR). Since 1997, the exploitation of GMR has made cheap multi-gigabyte hard disks commonplace. The magnetic orientations of the magnetised spots on the surface of a spinning disk are detected by measuring the changes they induce in the resistance of a tiny sensor. This technique is so sensitive that it means the spots can be made smaller and packed closer together than was previously possible, thus increasing the capacity and reducing the size and cost of a disk drive. Dr. Prinz and his colleagues are now exploiting the same phenomenon on the surface of memory chips, rather spinning disks. In a conventional memory chip, each binary digit (bit) of data is represented using a capacitor-reservoir of electrical charge that is either empty or fill -to represent a zero or a one. In the NRL’s magnetic design, by contrast, each bit is stored in a magnetic element in the form of a vertical pillar of magnetisable material. A matrix of wires passing above and below the elements allows each to be magnetised, either clockwise or anti-clockwise, to represent zero or one. Another set of wires allows current to pass through any particular element. By measuring an element’s resistance you can determine its magnetic orientation, and hence whether it is storing a zero or a one. Since the elements retain their magnetic orientation even when the power is off, the result is non-volatile memory. Unlike the elements of an electronic memory, a magnetic memory’s elements are not easily disrupted by radiation. And compared with electronic memories, whose capacitors need constant topping up, magnetic memories are simpler and consume less power. The NRL researchers plan to commercialise their device through a company called Non-V olatile Electronics, which recently began work on the necessary processing and fabrication techniques. But it will be some years before the first chips roll off the production line.Most attention in the field in focused on an alternative approach based on magnetic tunnel-junctions (MTJs), which are being investigated by researchers at chipmakers such as IBM, Motorola, Siemens and Hewlett-Packard. IBM’s research team, led by Stuart Parkin, has already created a 500-element working prototype that operates at 20 times the speed of conventional memory chips and consumes 1% of the power. Each element consists of a sandwich of two layers of magnetisable material separated by a barrier of aluminium oxide just four or five atoms thick. The polarisation of lower magnetisable layer is fixed in one direction, but that of the upper layer can be set (again, by passing a current through a matrix of control wires) either to the left or to the right, to store a zero or a one. The polarisations of the two layers are then either the same or opposite directions.Although the aluminum-oxide barrier is an electrical insulator, it is so thin that electrons are able to jump across it via a quantum-mechanical effect called tunnelling. It turns out that such tunnelling is easier when the two magnetic layers are polarised in the same direction than when they are polarised in opposite directions. So, by measuring the current that flows through the sandwich, it is possible to determine the alignment of the topmost layer, and hence whether it is storing a zero or a one.To build a full-scale memory chip based on MTJs is, however, no easy matter. According to Paulo Freitas, an expert on chip manufacturing at the Technical University of Lisbon, magnetic memory elements will have to become far smaller and more reliable than current prototypes if they are to compete with electronic memory. At the same time, they will have to be sensitive enough to respond when the appropriate wires in the control matrix are switched on, but not so sensitive that they respond when a neighbouring elements is changed. Despite these difficulties, the general consensus is that MTJs are the more promising ideas. Dr. Parkin says his group evaluated the GMR approach and decided not to pursue it, despite the fact that IBM pioneered GMR in hard disks. Dr. Prinz, however, contends that his plan will eventually offer higher storage densities and lower production costs.Not content with shaking up the multi-billion-dollar market for computer memory, some researchers have even more ambitious plans for magnetic computing. In a paper published last month in Science, Russell Cowburn and Mark Well and of Cambridge University outlined research that could form the basis of a magnetic microprocessor — a chip capable of manipulating (rather than merely storing) information magnetically. In place of conducting wires, a magnetic processor would have rows of magnetic dots, each of which could be polarised in one of two directions. Individual bits of information would travel down the rows as magnetic pulses, changing the orientation of the dots as they went. Dr. Cowbum and Dr. Welland have demonstrated how a logic gate (the basic element of a microprocessor) could work in such a scheme. In their experiment, they fed a signal in at one end of the chain of dots and used a second signal to control whether it propagated along the chain.It is, admittedly, a long way from a single logic gate to a full microprocessor, but this was true also when the transistor was first invented. Dr. Cowburn, who is now searching for backers to help commercialise the technology, says he believes it will be at least ten years before the first magnetic microprocessor is constructed. But other researchers in the field agree that such a chip, is the next logical step. Dr. Prinz says that once magnetic memory is sorted out “the target is to go after the logic circuits.” Whether all-magnetic computers will ever be able to compete with other contenders that are jostling to knock electronics off its perch — such as optical, biological and quantum computing — remains to be seen. Dr. Cowburn suggests that the future lies with hybrid machines that use different technologies. But computing with magnetism evidently has an attraction all its own.In developing magnetic memory chips to replace the electronic ones, two alternative research paths are being pursued. These are approaches based on:
 ....
MCQ-> The highest priced words are ghost-written by gagmen who furnish the raw material for comedy over the air and on the screen. They have a word-lore all their own, which they practise for five to fifteen hundred dollars a week, or fifteen dollars a gag at piece rates. That's sizable rate for confounding acrimony with matrimony, or extracting attar of roses from the other.Quite apart from the dollar sign on it, gagmen's word-lore is worth a close look, if you are given to the popular American pastime of playing with words — or if you're part of the 40 per cent who make their living in the word trade. Gag writers' tricks with words point up the fact that we have two distinct levels of language: familiar, ordinary words that everybody knows; and more elaborate words that don't turn up so often, but many of which we need to know if we are to feel at home in listening and reading today.To be sure gagmen play hob with the big words, making not sense but fun of them. They keep on confusing bigotry with bigamy, illiterate with illegitimate, monotony with monogamy, osculation with oscillation. They trade on the fact that for many of their listeners, these fancy terms linger in a twilight zone of meaning. It’s their deliberate intent to make everybody feel cozy at hearing big words, jumbled up or smacked down. After all, such words loom up over-size in ordinary talk, so no wonder they get the bulldozer treatment from the gagmen.Their wrecking technique incidentally reveals our language as full of tricky words, some with 19 different meanings, others which sound alike but differ in sense. To ring good punning changes, gag writers have to know their way around in the language. They don't get paid for ignorance, only for simulating it.Their trade is a hard one, and they regard it as serious business. They never laugh at each other's jokes; rarely at their own. Like comediennes, they are usually melancholy men in private life.Fertile invention and ingenious fancy are required to clean up ‘blue’ burlesque gags for radio use. These shady gags are theoretically taboo on the air. However, a gag writer who can leave a faint trace of bluing when he launders the joke is all the more admired — and more highly paid. A gag that keeps the blue tinge is called a ‘double intender’, gag-land jargon for double entendre. The double meaning makes the joke funny at two levels. Children and other innocents hearing the crack for the first time take it literally, laughing at the surface humour; listeners who remember the original as they heard it in vaudeville or burlesque, laugh at the artfulness with which the blue tinge is disguised.Another name for a double meaning of this sort is ‘insinuendo’. This is a portmanteau word or ‘combo’, as the gagmen would label it, thus abbreviating combination. By telescoping insinuation and innuendo, they get insinuendo, on the principle of blend words brought into vogue by Lewis Caroll. ‘Shock logic’ is another favourite with gag writers. Supposedly a speciality of women comediennes, it is illogical logic more easily illustrated than defined. A high school girl has to turn down a boy's proposal, she writes:Dear Jerry, I'm sorry, but I can't get engaged to you. My mother thinks I am too young to be engaged and besides, I'm already engaged to another boy. Yours regretfully. Guess who.Gag writers' lingo is consistently funnier than their gags. It should interest the slang-fancier. And like much vivid jargon developed in specialised trades and sports, a few of the terms are making their way into general use. Gimmick, for instance, in the sense either of a trick devised or the point of a joke, is creeping into the vocabulary of columnists and feature writers.Even apart from the trade lingo, gagmen's manoeuvres are of real concern to anyone who follows words with a fully awakened interest. For the very fact that gag writers often use a long and unusual word as the hinge of a joke, or as a peg for situation comedy, tells us something quite significant: they are well aware of the limitations of the average vocabulary and are quite willing to cash in on its shortcomings.When Fred Allens' joke-smiths work out a fishing routine, they have Allen referring to the bait in his most arch and solemn tones: "I presume you mean the legless invertebrate." This is the old minstrel trick, using a long fancy term, instead of calling a worm a worm. Chico Marx can stretch a pun over 500 feet of film, making it funnier all the time, as he did when he rendered, "Why a duck?"And even the high-brow radio writers have taken advantage of gagmen's technique. You might never expect to hear on the air such words as lepidopterist and entymologist. Both occur in a very famous radio play by Norman Corvine, ‘My client Curly’, about an unusual caterpillar which would dance to the tune ‘yes, sir, she's my baby’ but remained inert to all other music. The dancing caterpillar was given a real New York buildup, which involved calling in the experts on butterflies and insects which travel under the learned names above. Corvine made mild fun of the fancy professional titles, at the same time explaining them unobtrusively.There are many similar occasions where any one working with words can turn gagmen's trade secrets to account. Just what words do they think outside the familiar range? How do they pick the words that they ‘kick around’? It is not hard to find out.According to the writer, a larger part of the American population
 ....
MCQ-> Cells are the ultimate multi-taskers: they can switch on genes and carry out their orders, talk to each other, divide in two, and much more, all at the same time. But they couldn’t do any of these tricks without a power source to generate movement. The inside of a cell bustles with more traffic than Delhi roads, and, like all vehicles, the cell’s moving parts need engines. Physicists and biologists have looked ‘under the hood’ of the cell and laid out the nuts and bolts of molecular engines.The ability of such engines to convert chemical energy into motion is the envy nanotechnology researchers looking for ways to power molecule-sized devices. Medical researchers also want to understand how these engines work. Because these molecules are essential for cell division, scientists hope to shut down the rampant growth of cancer cells by deactivating certain motors. Improving motor-driven transport in nerve cells may also be helpful for treating diseases such as Alzheimer’s, Parkinson’s or ALS, also known as Lou Gehrig’s disease.We wouldn’t make it far in life without motor proteins. Our muscles wouldn’t contract. We couldn’t grow, because the growth process requires cells to duplicate their machinery and pull the copies apart. And our genes would be silent without the services of messenger RNA, which carries genetic instructions over to the cell’s protein-making factories. The movements that make these cellular activities possible occur along a complex network of threadlike fibers, or polymers, along which bundles of molecules travel like trams. The engines that power the cell’s freight are three families of proteins, called myosin, kinesin and dynein. For fuel, these proteins burn molecules of ATP, which cells make when they break down the carbohydrates and fats from the foods we eat. The energy from burning ATP causes changes in the proteins’ shape that allow them to heave themselves along the polymer track. The results are impressive: In one second, these molecules can travel between 50 and 100 times their own diameter. If a car with a five-foot-wide engine were as efficient, it would travel 170 to 340 kilometres per hour.Ronald Vale, a researcher at the Howard Hughes Medical Institute and the University of California at San Francisco, and Ronald Milligan of the Scripps Research Institute have realized a long-awaited goal by reconstructing the process by which myosin and kinesin move, almost down to the atom. The dynein motor, on the other hand, is still poorly understood. Myosin molecules, best known for their role in muscle contraction, form chains that lie between filaments of another protein called actin. Each myosin molecule has a tiny head that pokes out from the chain like oars from a canoe. Just as rowers propel their boat by stroking their oars through the water, the myosin molecules stick their heads into the actin and hoist themselves forward along the filament. While myosin moves along in short strokes, its cousin kinesin walks steadily along a different type of filament called a microtubule. Instead of using a projecting head as a lever, kinesin walks on two ‘legs’. Based on these differences, researchers used to think that myosin and kinesin were virtually unrelated. But newly discovered similarities in the motors’ ATP-processing machinery now suggest that they share a common ancestor — molecule. At this point, scientists can only speculate as to what type of primitive cell-like structure this ancestor occupied as it learned to burn ATP and use the energy to change shape. “We’ll never really know, because we can’t dig up the remains of ancient proteins, but that was probably a big evolutionary leap,” says Vale.On a slightly larger scale, loner cells like sperm or infectious bacteria are prime movers that resolutely push their way through to other cells. As L. Mahadevan and Paul Matsudaira of the Massachusetts Institute of Technology explain, the engines in this case are springs or ratchets that are clusters of molecules, rather than single proteins like myosin and kinesin. Researchers don’t yet fully understand these engines’ fueling process or the details of how they move, but the result is a force to be reckoned with. For example, one such engine is a spring-like stalk connecting a single-celled organism called a vorticellid to the leaf fragment it calls home. When exposed to calcium, the spring contracts, yanking the vorticellid down at speeds approaching three inches (eight centimetres) per second.Springs like this are coiled bundles of filaments that expand or contract in response to chemical cues. A wave of positively charged calcium ions, for example, neutralizes the negative charges that keep the filaments extended. Some sperm use spring-like engines made of actin filaments to shoot out a barb that penetrates the layers that surround an egg. And certain viruses use a similar apparatus to shoot their DNA into the host’s cell. Ratchets are also useful for moving whole cells, including some other sperm and pathogens. These engines are filaments that simply grow at one end, attracting chemical building blocks from nearby. Because the other end is anchored in place, the growing end pushes against any barrier that gets in its way.Both springs and ratchets are made up of small units that each move just slightly, but collectively produce a powerful movement. Ultimately, Mahadevan and Matsudaira hope to better understand just how these particles create an effect that seems to be so much more than the sum of its parts. Might such an understanding provide inspiration for ways to power artificial nano-sized devices in the future? “The short answer is absolutely,” says Mahadevan. “Biology has had a lot more time to evolve enormous richness in design for different organisms. Hopefully, studying these structures will not only improve our understanding of the biological world, it will also enable us to copy them, take apart their components and recreate them for other purpose.”According to the author, research on the power source of movement in cells can contribute to
 ....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions