1. Astronomers determined that the planet Spin faster than any other object in our solar system, with a rotational velocity of about 56000 miles per hour.






Write Comment

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->Name the planet similar in size and composition to Earth which has been discovered by astronomers outside of our solar-system?....
QA->Driving at 48 miles pe hour,how many minutes will it take to drive 32 miles?....
QA->If a car covers 60 km at 30 km per hour and the next 120 km at 60 km per hour,what is the average speed of the car over the entire distance of 180 km?....
QA->Any industry located in a rural area which produces any goods or renders any service with or without the use of power and in which the fixed capital investment per head of a worker does not exceed one lakh rupees is known as:....
QA->WHICH IS THE BRIGHTEST PLANET IN OUR SOLAR SYSTEM....
MCQ-> Read the passage carefully and answer the questions given at the end of each passage:Turning the business involved more than segmenting and pulling out of retail. It also meant maximizing every strength we had in order to boost our profit margins. In re-examining the direct model, we realized that inventory management was not just core strength; it could be an incredible opportunity for us, and one that had not yet been discovered by any of our competitors. In Version 1.0 the direct model, we eliminated the reseller, thereby eliminating the mark-up and the cost of maintaining a store. In Version 1.1, we went one step further to reduce inventory inefficiencies. Traditionally, a long chain of partners was involved in getting a product to the customer. Let’s say you have a factory building a PC we’ll call model #4000. The system is then sent to the distributor, which sends it to the warehouse, which sends it to the dealer, who eventually pushes it on to the consumer by advertising, “I’ve got model #4000. Come and buy it.” If the consumer says, “But I want model #8000,” the dealer replies, “Sorry, I only have model #4000.” Meanwhile, the factory keeps building model #4000s and pushing the inventory into the channel. The result is a glut of model #4000s that nobody wants. Inevitably, someone ends up with too much inventory, and you see big price corrections. The retailer can’t sell it at the suggested retail price, so the manufacturer loses money on price protection (a practice common in our industry of compensating dealers for reductions in suggested selling price). Companies with long, multi-step distribution systems will often fill their distribution channels with products in an attempt to clear out older targets. This dangerous and inefficient practice is called “channel stuffing”. Worst of all, the customer ends up paying for it by purchasing systems that are already out of date Because we were building directly to fill our customers’ orders, we didn’t have finished goods inventory devaluing on a daily basis. Because we aligned our suppliers to deliver components as we used them, we were able to minimize raw material inventory. Reductions in component costs could be passed on to our customers quickly, which made them happier and improved our competitive advantage. It also allowed us to deliver the latest technology to our customers faster than our competitors. The direct model turns conventional manufacturing inside out. Conventional manufacturing, because your plant can’t keep going. But if you don’t know what you need to build because of dramatic changes in demand, you run the risk of ending up with terrific amounts of excess and obsolete inventory. That is not the goal. The concept behind the direct model has nothing to do with stockpiling and everything to do with information. The quality of your information is inversely proportional to the amount of assets required, in this case excess inventory. With less information about customer needs, you need massive amounts of inventory. So, if you have great information – that is, you know exactly what people want and how much - you need that much less inventory. Less inventory, of course, corresponds to less inventory depreciation. In the computer industry, component prices are always falling as suppliers introduce faster chips, bigger disk drives and modems with ever-greater bandwidth. Let’s say that Dell has six days of inventory. Compare that to an indirect competitor who has twenty-five days of inventory with another thirty in their distribution channel. That’s a difference of forty-nine days, and in forty-nine days, the cost of materials will decline about 6 percent. Then there’s the threat of getting stuck with obsolete inventory if you’re caught in a transition to a next- generation product, as we were with those memory chip in 1989. As the product approaches the end of its life, the manufacturer has to worry about whether it has too much in the channel and whether a competitor will dump products, destroying profit margins for everyone. This is a perpetual problem in the computer industry, but with the direct model, we have virtually eliminated it. We know when our customers are ready to move on technologically, and we can get out of the market before its most precarious time. We don’t have to subsidize our losses by charging higher prices for other products. And ultimately, our customer wins. Optimal inventory management really starts with the design process. You want to design the product so that the entire product supply chain, as well as the manufacturing process, is oriented not just for speed but for what we call velocity. Speed means being fast in the first place. Velocity means squeezing time out of every step in the process. Inventory velocity has become a passion for us. To achieve maximum velocity, you have to design your products in a way that covers the largest part of the market with the fewest number of parts. For example, you don’t need nine different disk drives when you can serve 98 percent of the market with only four. We also learned to take into account the variability of the lost cost and high cost components. Systems were reconfigured to allow for a greater variety of low-cost parts and a limited variety of expensive parts. The goal was to decrease the number of components to manage, which increased the velocity, which decreased the risk of inventory depreciation, which increased the overall health of our business system. We were also able to reduce inventory well below the levels anyone thought possible by constantly challenging and surprising ourselves with the result. We had our internal skeptics when we first started pushing for ever-lower levels of inventory. I remember the head of our procurement group telling me that this was like “flying low to the ground 300 knots.” He was worried that we wouldn’t see the trees.In 1993, we had $2.9 billion in sales and $220 million in inventory. Four years later, we posted $12.3 billion in sales and had inventory of $33 million. We’re now down to six days of inventory and we’re starting to measure it in hours instead of days. Once you reduce your inventory while maintaining your growth rate, a significant amount of risk comes from the transition from one generation of product to the next. Without traditional stockpiles of inventory, it is critical to precisely time the discontinuance of the older product line with the ramp-up in customer demand for the newer one. Since we were introducing new products all the time, it became imperative to avoid the huge drag effect from mistakes made during transitions. E&O; – short for “excess and obsolete” - became taboo at Dell. We would debate about whether our E&O; was 30 or 50 cent per PC. Since anything less than $20 per PC is not bad, when you’re down in the cents range, you’re approaching stellar performance.Find out the TRUE statement:
 ....
MCQ->Astronomers determined that the planet Spin faster than any other object in our solar system, with a rotational velocity of about 56000 miles per hour.....
MCQ-> Read the passage carefully and answer the questions given at the end of each passage:We now come to the second part of our journey under the sea. The first ended with the moving scene in the coral cemetery which left a deep impression on my mind. I could no longer content myself with the theory which satisfied Conseil. That worthy fellow persisted in seeing in the Commander of the Nautilus one of those unknown servants who returns mankind contempt for indifference. For him, he was a misunderstood genius who, tired of earth’s deceptions, had taken refuge in this inaccessible medium, where he might follow his instincts freely. To my mind, this explains but one side of Captain Nemo’s character. Indeed, the mystery of that last night during which we had been chained in prison, the sleep, and the precaution so violently taken by the Captain of snatching from my eyes the glass I had raised to sweep the horizon, the mortal wound of the man, due to an unaccountable shock of the Nautilus, all put me on a new track. No; Captain Nemo was not satisfied with shunning man. His formidable apparatus not only suited his instinct of freedom, but perhaps also the design of some terrible retaliation. That day, at noon, the second officer came to take the altitude of the sun. I mounted the platform, and watched the operation. As he was taking observations with the sextant, one of the sailors of the Nautilus (the strong man who had accompanied us on our first submarine excursion to the Island of Crespo) came to clean the glasses of the lantern. I examined the fittings of the apparatus, the strength of which was increased a hundredfold by lenticular rings, placed similar to those in a lighthouse, and which projected their brilliance in a horizontal plane. The electric lamp was combined in such a way as to give its most powerful light. Indeed, it was produced in vacuo, which insured both its steadiness and its intensity. This vacuum economized the graphite points between which the luminous arc was developed - an important point of economy for Captain Nemo, who could not easily have replaced them; and under these conditions their waste was imperceptible. When the Nautilus was ready to continue its submarine journey, I went down to the saloon. The panel was closed, and the course marked direct west. We were furrowing the waters of the Indian Ocean, a vast liquid plain, with a surface of 1,200,000,000 of acres, and whose waters are so clear and transparent that any one leaning over them would turn giddy. The Nautilus usually floated between fifty and a hundred fathoms deep. We went on so for some days. To anyone but myself, who had a great love for the sea, the hours would have seemed long and monotonous; but the daily walks on the platform, when I steeped myself in the reviving air of the ocean, the sight of the rich waters through the windows of the saloon, the books in the library, the compiling of my memoirs, took up all my time, and left me not a moment of ennui or weariness. From the 21 st to the 23 rd of January the Nautilus went at the rate of two hundred and fifty leagues in twenty- four hours, being five hundred and forty miles, or twenty-two miles an hour. If we recognized so many different varieties of fish, it was because, attracted by the electric light, they tried to follow us; the greater part, however, were soon distanced by our speed, though some kept their place in the waters of the Nautilus for a time. The morning of the 24 th , we observed Keeling Island, a coral formation, planted with magnificent cocos, and which had been visited by Mr. Darwin and Captain Fitzroy. The Nautilus skirted the shores of this desert island for a little distance. Soon Keeling Island disappeared from the horizon, and our course was directed to the north- west in the direction of the Indian Peninsula. From Keeling Island our course was slower and more variable, often taking us into great depths. Several times they made use of the inclined planes, which certain internal levers placed obliquely to the waterline. I observed that in the upper regions the water was always colder in the high levels than at the surface of the sea. On the 25th of January the ocean was entirely deserted; the Nautilus passed the day on the surface, beating the waves with its powerful screw and making them rebound to a great height. Three parts of this day I spent on the platform. I watched the sea. Nothing on the horizon till about four o’clock then there was a steamer running west on our counter. Her masts were visible for an instant, but she could not see the Nautilus, being too low in the water. I fancied this steamboat belonged to the P.O. Company, which runs from Ceylon to Sydney, touching at King George’s Point and Melbourne. At five o’clock in the evening, before that fleeting twilight which binds night to day in tropical zones, Conseil and I were astonished by a curious spectacle. It was a shoal of Argonauts travelling along on the surface of the ocean. We could count several hundreds. These graceful molluscs moved backwards by means of their locomotive tube, through which they propelled the water already drawn in. Of their eight tentacles, six were elongated, and stretched out floating on the water, whilst the other two, rolled up flat, were spread to the wing like a light sail. I saw their spiral-shaped and fluted shells, which Cuvier justly compares to an elegant skiff. For nearly an hour the Nautilus floated in the midst of this shoal of molluscs. The next day, 26 th of January, we cut the equator at the eighty-second meridian and entered the northern hemisphere. During the day a formidable troop of sharks accompanied us. They were “cestracio philippi” sharks, with brown backs and whitish bellies, armed with eleven rows of teeth, their throat being marked with a large black spot surrounded with white like an eye. There were also some Isabella sharks, with rounded snouts marked with dark spots. These powerful creatures often hurled themselves at the windows of the saloon with such violence as to make us feel very insecure. But the Nautilus, accelerating her speed, easily left the most rapid of them behind.About seven o’clock in the evening, the Nautilus, half- immersed, was sailing in a sea of milk. At first sight the ocean seemed lactified. Was it the effect of the lunar rays? No; for the moon, scarcely two days old, was still lying hidden under the horizon in the rays of the sun. The whole sky, though lit by the sidereal rays, seemed black by contrast with the whiteness of the waters. Conseil could not believe his eyes, and questioned me as to the cause of this strange phenomenon. Happily I was able to answer him. “It is called a milk sea,” I explained. “A large extent of white waves is often to be seen on the coasts of Amboyna, and in these parts of the sea.”  “But, sir,” said Conseil, “can you tell me what causes such an effect? For I suppose the water is not really turned into milk.”  “No, my boy; and the whiteness which surprises you is caused only by the presence of myriads of luminous little worm, gelatinous and without colour, of the thickness of a hair, and whose length is not more than seven-thousandths of an inch. These insects adhere to one another sometimes for several leagues.” “Several leagues!” exclaimed Conseil. “Yes, my boy; and you need not try to compute the number of these infusoria. You will not be able, for, if I am not mistaken, ships have floated on these milk seas for more than forty miles.” Towards midnight the sea suddenly resumed its usual colour; but behind us, even to the limits of the horizon, the sky reflected the whitened waves, and for a long time seemed impregnated with the vague glimmerings of an aurora borealisFind the TRUE Sentence:
 ....
MCQ-> The broad scientific understanding today is that our planet is experiencing a warming trend over and above natural and normal variations that is almost certainly due to human activities associated with large-scale manufacturing. The process began in the late 1700s with the Industrial Revolution, when manual labor, horsepower, and water power began to be replaced by or enhanced by machines. This revolution, over time, shifted Britain, Europe, and eventually North America from largely agricultural and trading societies to manufacturing ones, relying on machinery and engines rather than tools and animals.The Industrial Revolution was at heart a revolution in the use of energy and power. Its beginning is usually dated to the advent of the steam engine, which was based on the conversion of chemical energy in wood or coal to thermal energy and then to mechanical work primarily the powering of industrial machinery and steam locomotives. Coal eventually supplanted wood because, pound for pound, coal contains twice as much energy as wood (measured in BTUs, or British thermal units, per pound) and because its use helped to save what was left of the world's temperate forests. Coal was used to produce heat that went directly into industrial processes, including metallurgy, and to warm buildings, as well as to power steam engines. When crude oil came along in the mid- 1800s, still a couple of decades before electricity, it was burned, in the form of kerosene, in lamps to make light replacing whale oil. It was also used to provide heat for buildings and in manufacturing processes, and as a fuel for engines used in industry and propulsion.In short, one can say that the main forms in which humans need and use energy are for light, heat, mechanical work and motive power, and electricity which can be used to provide any of the other three, as well as to do things that none of those three can do, such as electronic communications and information processing. Since the Industrial Revolution, all these energy functions have been powered primarily, but not exclusively, by fossil fuels that emit carbon dioxide (CO2), To put it another way, the Industrial Revolution gave a whole new prominence to what Rochelle Lefkowitz, president of Pro-Media Communications and an energy buff, calls "fuels from hell" - coal, oil, and natural gas. All these fuels from hell come from underground, are exhaustible, and emit CO2 and other pollutants when they are burned for transportation, heating, and industrial use. These fuels are in contrast to what Lefkowitz calls "fuels from heaven" -wind, hydroelectric, tidal, biomass, and solar power. These all come from above ground, are endlessly renewable, and produce no harmful emissions.Meanwhile, industrialization promoted urbanization, and urbanization eventually gave birth to suburbanization. This trend, which was repeated across America, nurtured the development of the American car culture, the building of a national highway system, and a mushrooming of suburbs around American cities, which rewove the fabric of American life. Many other developed and developing countries followed the American model, with all its upsides and downsides. The result is that today we have suburbs and ribbons of highways that run in, out, and around not only America s major cities, but China's, India's, and South America's as well. And as these urban areas attract more people, the sprawl extends in every direction.All the coal, oil, and natural gas inputs for this new economic model seemed relatively cheap, relatively inexhaustible, and relatively harmless-or at least relatively easy to clean up afterward. So there wasn't much to stop the juggernaut of more people and more development and more concrete and more buildings and more cars and more coal, oil, and gas needed to build and power them. Summing it all up, Andy Karsner, the Department of Energy's assistant secretary for energy efficiency and renewable energy, once said to me: "We built a really inefficient environment with the greatest efficiency ever known to man."Beginning in the second half of the twentieth century, a scientific understanding began to emerge that an excessive accumulation of largely invisible pollutants-called greenhouse gases - was affecting the climate. The buildup of these greenhouse gases had been under way since the start of the Industrial Revolution in a place we could not see and in a form we could not touch or smell. These greenhouse gases, primarily carbon dioxide emitted from human industrial, residential, and transportation sources, were not piling up along roadsides or in rivers, in cans or empty bottles, but, rather, above our heads, in the earth's atmosphere. If the earth's atmosphere was like a blanket that helped to regulate the planet's temperature, the CO2 buildup was having the effect of thickening that blanket and making the globe warmer.Those bags of CO2 from our cars float up and stay in the atmosphere, along with bags of CO2 from power plants burning coal, oil, and gas, and bags of CO2 released from the burning and clearing of forests, which releases all the carbon stored in trees, plants, and soil. In fact, many people don't realize that deforestation in places like Indonesia and Brazil is responsible for more CO2 than all the world's cars, trucks, planes, ships, and trains combined - that is, about 20 percent of all global emissions. And when we're not tossing bags of carbon dioxide into the atmosphere, we're throwing up other greenhouse gases, like methane (CH4) released from rice farming, petroleum drilling, coal mining, animal defecation, solid waste landfill sites, and yes, even from cattle belching. Cattle belching? That's right-the striking thing about greenhouse gases is the diversity of sources that emit them. A herd of cattle belching can be worse than a highway full of Hummers. Livestock gas is very high in methane, which, like CO2, is colorless and odorless. And like CO2, methane is one of those greenhouse gases that, once released into the atmosphere, also absorb heat radiating from the earth's surface. "Molecule for molecule, methane's heat-trapping power in the atmosphere is twenty-one times stronger than carbon dioxide, the most abundant greenhouse gas.." reported Science World (January 21, 2002). “With 1.3 billion cows belching almost constantly around the world (100 million in the United States alone), it's no surprise that methane released by livestock is one of the chief global sources of the gas, according to the U.S. Environmental Protection Agency ... 'It's part of their normal digestion process,' says Tom Wirth of the EPA. 'When they chew their cud, they regurgitate [spit up] some food to rechew it, and all this gas comes out.' The average cow expels 600 liters of methane a day, climate researchers report." What is the precise scientific relationship between these expanded greenhouse gas emissions and global warming? Experts at the Pew Center on Climate Change offer a handy summary in their report "Climate Change 101. " Global average temperatures, notes the Pew study, "have experienced natural shifts throughout human history. For example; the climate of the Northern Hemisphere varied from a relatively warm period between the eleventh and fifteenth centuries to a period of cooler temperatures between the seventeenth century and the middle of the nineteenth century. However, scientists studying the rapid rise in global temperatures during the late twentieth century say that natural variability cannot account for what is happening now." The new factor is the human factor-our vastly increased emissions of carbon dioxide and other greenhouse gases from the burning of fossil fuels such as coal and oil as well as from deforestation, large-scale cattle-grazing, agriculture, and industrialization.“Scientists refer to what has been happening in the earth’s atmosphere over the past century as the ‘enhanced greenhouse effect’”, notes the Pew study. By pumping man- made greenhouse gases into the atmosphere, humans are altering the process by which naturally occurring greenhouse gases, because of their unique molecular structure, trap the sun’s heat near the earth’s surface before that heat radiates back into space."The greenhouse effect keeps the earth warm and habitable; without it, the earth's surface would be about 60 degrees Fahrenheit colder on average. Since the average temperature of the earth is about 45 degrees Fahrenheit, the natural greenhouse effect is clearly a good thing. But the enhanced greenhouse effect means even more of the sun's heat is trapped, causing global temperatures to rise. Among the many scientific studies providing clear evidence that an enhanced greenhouse effect is under way was a 2005 report from NASA's Goddard Institute for Space Studies. Using satellites, data from buoys, and computer models to study the earth's oceans, scientists concluded that more energy is being absorbed from the sun than is emitted back to space, throwing the earth's energy out of balance and warming the globe."Which of the following statements is correct? (I) Greenhouse gases are responsible for global warming. They should be eliminated to save the planet (II) CO2 is the most dangerous of the greenhouse gases. Reduction in the release of CO2 would surely bring down the temperature (III) The greenhouse effect could be traced back to the industrial revolution. But the current development and the patterns of life have enhanced their emissions (IV) Deforestation has been one of the biggest factors contributing to the emission of greenhouse gases Choose the correct option:....
MCQ-> Language is not a cultural artifact that we learn the way we learn to tell time or how the federal government works. Instead, it is a distinct piece of the biological makeup of our brains. Language is a complex, specialized skill, which develops in the child spontaneously, without conscious effort or formal instruction, is deployed without awareness of its underlying logic, is qualitatively the same in every individual, and is distinct from more general abilities to process information or behave intelligently. For these reasons some cognitive scientists have described language as a psychological faculty, a mental organ, a neural system, and a computational module. But I prefer the admittedly quaint term “instinct”. It conveys the idea that people know how to talk in more or less the sense that spiders know how to spin webs. Web-spinning was not invented by some unsung spider genius and does not depend on having had the right education or on having an aptitude for architecture or the construction trades. Rather, spiders spin spider webs because they have spider brains, which give them the urge to spin and the competence to succeed. Although there are differences between webs and words, I will encourage you to see language in this way, for it helps to make sense of the phenomena we will explore. Thinking of language as an instinct inverts the popular wisdom, especially as it has been passed down in the canon of the humanities and social sciences. Language is no more a cultural invention than is upright posture. It is not a manifestation of a general capacity to use symbols: a three-year-old, we shall see, is a grammatical genius, but is quite incompetent at the visual arts, religious iconography, traffic signs, and the other staples of the semiotics curriculum. Though language is a magnificent ability unique to Homo sapiens among living species, it does not call for sequestering the study of humans from the domain of biology, for a magnificent ability unique to a particular living species is far from unique in the animal kingdom. Some kinds of bats home in on flying insects using Doppler sonar. Some kinds of migratory birds navigate thousands of miles by calibrating the positions of the constellations against the time of day and year. In nature’s talent show, we are simply a species of primate with our own act, a knack for communicating information about who did what to whom by modulating the sounds we make when we exhale. Once you begin to look at language not as the ineffable essence of human uniqueness hut as a biological adaptation to communicate information, it is no longer as tempting to see language as an insidious shaper of thought, and, we shall see, it is not. Moreover, seeing language as one of nature’s engineering marvels — an organ with “that perfection of structure and co-adaptation which justly excites our admiration,” in Darwin’s words - gives us a new respect for your ordinary Joe and the much-maligned English language (or any language). The complexity of language, from the scientist’s point of view, is part of our biological birthright; it is not something that parents teach their children or something that must be elaborated in school — as Oscar Wilde said, “Education is an admirable thing, but it is well to remember from time to time that nothing that is worth knowing can be taught.” A preschooler’s tacit knowledge of grammar is more sophisticated than the thickest style manual or the most state-of-the-art computer language system, and the same applies to all healthy human beings, even the notorious syntaxfracturing professional athlete and the, you know, like, inarticulate teenage skateboarder. Finally, since language is the product of a wellengineered biological instinct, we shall see that it is not the nutty barrel of monkeys that entertainercolumnists make it out to be.According to the passage, which of the following does not stem from popular wisdom on language?
 ....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions