1. The application of biological methods and systems found in nature to the study of engineering systems and modern technology is known as





Write Comment

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->Which country decided to phase out 300-year-old tradition of paying by cheque in favour of more modern payment methods?....
QA->Colorado State University chemical and biological engineering professor who was recently awarded a $400,000, five-year National Science Foundation CAREER grant?....
QA->Headquarters of Plastic Engineering and Technology Institute ?....
QA->AndhraPradesh government has initiated to construct Agri-Plastic Park in which citythat should have Central Institute of Plastic Engineering and Technology?....
QA->Which Governor General found Telegraph and Postal systems?....
MCQ-> India is rushing headlong toward economic success and modernisation, counting on high- tech industries such as information technology and biotechnology to propel the nation toprosperity. India’s recent announcement that it would no longer produce unlicensed inexpensive generic pharmaceuticals bowed to the realities of the World TradeOrganisation while at the same time challenging the domestic drug industry to compete with the multinational firms. Unfortunately, its weak higher education sector constitutes the Achilles’ Heel of this strategy. Its systematic disinvestment in higher education inrecent years has yielded neither world-class research nor very many highly trained scholars, scientists, or managers to sustain high-tech development. India’s main competitors especially China but also Singapore, Taiwan, and South Korea — are investing in large and differentiated higher education systems. They are providingaccess to large number of students at the bottom of the academic system while at the same time building some research-based universities that are able to compete with theworld’s best institutions. The recent London Times Higher Education Supplement ranking of the world’s top 200 universities included three in China, three in Hong Kong,three in South Korea, one in Taiwan, and one in India (an Indian Institute of Technology at number 41.— the specific campus was not specified). These countries are positioningthemselves for leadership in the knowledge-based economies of the coming era. There was a time when countries could achieve economic success with cheap labour andlow-tech manufacturing. Low wages still help, but contemporary large-scale development requires a sophisticated and at least partly knowledge-based economy.India has chosen that path, but will find a major stumbling block in its university system. India has significant advantages in the 21st century knowledge race. It has a large high ereducation sector — the third largest in the world in student numbers, after China andthe United States. It uses English as a primary language of higher education and research. It has a long academic tradition. Academic freedom is respected. There are asmall number of high quality institutions, departments, and centres that can form the basis of quality sector in higher education. The fact that the States, rather than the Central Government, exercise major responsibility for higher education creates a rather cumbersome structure, but the system allows for a variety of policies and approaches. Yet the weaknesses far outweigh the strengths. India educates approximately 10 per cent of its young people in higher education compared with more than half in the major industrialised countries and 15 per cent in China. Almost all of the world’s academic systems resemble a pyramid, with a small high quality tier at the top and a massive sector at the bottom. India has a tiny top tier. None of its universities occupies a solid position at the top. A few of the best universities have some excellent departments and centres, and there is a small number of outstanding undergraduate colleges. The University Grants Commission’s recent major support of five universities to build on their recognised strength is a step toward recognising a differentiated academic system and fostering excellence. At present, the world-class institutions are mainly limited to the Indian Institutes of Technology (IITs), the Indian Institutes of Management (IIMs) and perhaps a few others such as the All India Institute of Medical Sciences and the Tata Institute of Fundamental Research. These institutions, combined, enroll well under 1 percent of the student population. India’s colleges and universities, with just a few exceptions, have become large, under-funded, ungovernable institutions. At many of them, politics has intruded into campus life, influencing academic appointments and decisions across levels. Under-investment in libraries, information technology, laboratories, and classrooms makes it very difficult to provide top-quality instruction or engage in cutting-edge research.The rise in the number of part-time teachers and the freeze on new full-time appointments in many places have affected morale in the academic profession. The lackof accountability means that teaching and research performance is seldom measured. The system provides few incentives to perform. Bureaucratic inertia hampers change.Student unrest and occasional faculty agitation disrupt operations. Nevertheless, with a semblance of normality, faculty administrators are. able to provide teaching, coordinate examinations, and award degrees. Even the small top tier of higher education faces serious problems. Many IIT graduates,well trained in technology, have chosen not to contribute their skills to the burgeoning technology sector in India. Perhaps half leave the country immediately upon graduation to pursue advanced study abroad — and most do not return. A stunning 86 per cent of students in science and technology fields from India who obtain degrees in the United States do not return home immediately following their study. Another significant group, of about 30 per cent, decides to earn MBAs in India because local salaries are higher.—and are lost to science and technology.A corps of dedicated and able teachers work at the IlTs and IIMs, but the lure of jobs abroad and in the private sector make it increasingly difficult to lure the best and brightest to the academic profession.Few in India are thinking creatively about higher education. There is no field of higher education research. Those in government as well as academic leaders seem content to do the “same old thing.” Academic institutions and systems have become large and complex. They need good data, careful analysis, and creative ideas. In China, more than two-dozen higher education research centers, and several government agencies are involved in higher education policy.India has survived with an increasingly mediocre higher education system for decades.Now as India strives to compete in a globalized economy in areas that require highly trained professionals, the quality of higher education becomes increasingly important.India cannot build internationally recognized research-oriented universities overnight,but the country has the key elements in place to begin and sustain the process. India will need to create a dozen or more universities that can compete internationally to fully participate in the new world economy. Without these universities, India is destined to remain a scientific backwater.Which of the following ‘statement(s) is/are correct in the context of the given passage ? I. India has the third largest higher education sector in the world in student numbers. II. India is moving rapidly toward economic success and modernisation through high tech industries such as information technology and bitechonology to make the nation to prosperity. III. India’s systematic disinvestment in higher education in recent years has yielded world class research and many world class trained scholars, scientists to sustain high-tech development.....
MCQ-> Read passage carefully. Answer the questions by selecting the most appropriate option (with reference to the passage). PASSAGE 4While majoring in computer science isn't a requirement to participate in the Second Machine Age, what skills do liberal arts graduates specifically possess to contribute to this brave new world? Another major oversight in the debate has been the failure to appreciate that a good liberal arts education teaches many skills that are not only valuable to the general world of business, but are in fact vital to innovating the next wave of breakthrough tech-driven products and services. Many defenses of the value of a liberal arts education have been launched, of course, with the emphasis being on the acquisition of fundamental thinking and communication skills, such as critical thinking, logical argumentation, and good communication skills. One aspect of liberal arts education that has been strangely neglected in the discussion is the fact that the humanities and social sciences are devoted to the study of human nature and the nature of our communities and larger societies. Students who pursue degrees in the liberal arts disciplines tend to be particularly motivated to investigate what makes us human: how we behave and why we behave as we do. They're driven to explore how our families and our public institutions-such as our schools and legal systems-operate, and could operate better, and how governments and economies work, or as is so often the case, are plagued by dysfunction. These students learn a great deal from their particular courses of study and apply that knowledge to today's issues, the leading problems to be tackled, and various approaches for analyzing and addressing those problems. The greatest opportunities for innovation in the emerging era are in applying evolving technological capabilities to finding better ways to solve human problems like social dysfunction and political corruption; finding ways to better educate children; helping people live healthier and happier lives by altering harmful behaviors; improving our working conditions; discovering better ways to tackle poverty; Improving healthcare and making it more affordable; making our governments more accountable, from the local level up to that of global affairs; and finding optimal ways to incorporate intelligent, nimble machines into our work lives so that we are empowered to do more of the work that we do best, and to let the machines do the rest. Workers with a solid liberal arts education have a strong foundation to build on in pursuing these goals. One of the most immediate needs in technology innovation is to invest products and services with more human qualities. with more sensitivity to human needs and desires. Companies and entrepreneurs that want to succeed today and in the future must learn to consider in all aspects of their product and service creation how they can make use of the new technologies to make them more humane. Still, many other liberal arts disciplines also have much to provide the world of technological innovation. The study of psychology, for example, can help people build products that are more attuned to our emotions and ways of thinking. Experience in Anthropology can additionally help companies understand cultural and individual behavioural factors that should be considered in developing products and in marketing them. As technology allows for more machine intelligence and our lives become increasingly populated by the Internet of things and as the gathering of data about our lives and analysis of it allows for more discoveries about our behaviour, consideration of how new products and services can be crafted for the optimal enhancement of our lives and the nature of our communities, workplaces and governments will be of vital importance. Those products and services developed with the keeneSt sense of how they' can serve our human needs and complement our human talents will have a distinct competitive advantage. Much of the criticism of the liberal arts is based on the false assumption that liberal arts students lack rigor in comparison to those participating in the STEM disciplines and that they are 'soft' and unscientific whereas those who study STEM fields learn the scientific method. In fact the liberal arts teach many methods of rigorous inquiry and analysis, such as close observation and interviewing in ways that hard science adherents don't always appreciate. Many fields have long incorporated the scientific method and other types of data driven scientific inquiry and problem solving. Sociologists have developed sophisticated mathematical models of societal networks. Historians gather voluminous data on centuries-old household expenses, marriage and divorce rates, and the world trade, and use data to conduct statistical analyses, identifying trends and contributing factors to the phenomena they are studying. Linguists have developed high-tech models of the evolution of language, and they've made crucial contributions to the development of one of the technologies behind the rapid advance of automation- natural language processing, whereby computers are able to communicate with the, accuracy and personality of Siri and Alexa. It's also important to debunk the fallacy that liberal arts students who don't study these quantitative analytical methods have no 'hard' or relevant skills. This gets us back to the arguments about the fundamental ways of thinking, inquiring, problem solving and communicating that a liberal arts education teaches.What is the central theme of the passage?
 ....
MCQ-> Read the following passage to answer the given question based on it. Some words/phrases are printed in bold to help you locate them while answering some of the questions.Organized retail has “fuelled” new growth categories like liquid hand wash, breakfast cereals and pet foods in the consumer goods industry accounting for almost 50% of their sales said data from market search firm Nielsen The figures showed some of these new categories got more than 40% of their business from modern retail outlets.The data also suggests how products in these categories reach the neighbourhood kirana stores after they have established themselves in modern trade While grocers continue to be an important channel for the new and evolving categories we saw an increased presence of the high end products in modern trade For example premium products in laundry detergents dishwashing car air fresheners and surface care increased in availability through this format as these products are aimed at “affluent” consumers who are more likely to shop in supermarket/hypermarket outlets and who are willing to pay more for specialized products Some other categories that have grown exceptionally and now account for bulk of the sales from modern retail are frozen and With the evolution of modern trade our growth in this channel has been healthy as it is for several other categories Modern retail is an important part of our business said managing director Kellogg India. What modern retail offers to companies experimenting with new categories is the chance to educate customers which was not the case with a general trade store Category creation and market development starts with modern trade but as more consumer start consuming this category they “penetrate into other channels” said president food FMCG category Future Group the country’s largest retailer which operates stores like Big Bazaar But a point to note here is that modern retailers themselves push their own private brands in these very categories and can emerge as a big threat for the consumers goods and foods companies For instance Big Bazaar’s private label Clean Mate is hugely popular and sells more than a brand like Harpic in its own stores So there is a certain amount of conflict and competition that will play out over the next few years which the FMCG companies will have to watch out for said KPMG’s executive director (retail) In the past there have been instances of retailers boycotting products from big FMCG players on the issue of margins but as modern retail become increasingly significant for “pushing” new categories experts say we could see more partnerships being forged between retailers and FMCG companies Market development for new categories takes time so brand wars for leadership and consumer franchise will be fought on the modern retail platform A new brand can overnight compete with “established” companies by trying up with few retailers in these categories president of Future Group addedWhich of the following is being referred to as new growth category ?
 ....
MCQ->The application of biological methods and systems found in nature to the study of engineering systems and modern technology is known as....
MCQ-> Language is not a cultural artifact that we learn the way we learn to tell time or how the federal government works. Instead, it is a distinct piece of the biological makeup of our brains. Language is a complex, specialized skill, which develops in the child spontaneously, without conscious effort or formal instruction, is deployed without awareness of its underlying logic, is qualitatively the same in every individual, and is distinct from more general abilities to process information or behave intelligently. For these reasons some cognitive scientists have described language as a psychological faculty, a mental organ, a neural system, and a computational module. But I prefer the admittedly quaint term “instinct”. It conveys the idea that people know how to talk in more or less the sense that spiders know how to spin webs. Web-spinning was not invented by some unsung spider genius and does not depend on having had the right education or on having an aptitude for architecture or the construction trades. Rather, spiders spin spider webs because they have spider brains, which give them the urge to spin and the competence to succeed. Although there are differences between webs and words, I will encourage you to see language in this way, for it helps to make sense of the phenomena we will explore. Thinking of language as an instinct inverts the popular wisdom, especially as it has been passed down in the canon of the humanities and social sciences. Language is no more a cultural invention than is upright posture. It is not a manifestation of a general capacity to use symbols: a three-year-old, we shall see, is a grammatical genius, but is quite incompetent at the visual arts, religious iconography, traffic signs, and the other staples of the semiotics curriculum. Though language is a magnificent ability unique to Homo sapiens among living species, it does not call for sequestering the study of humans from the domain of biology, for a magnificent ability unique to a particular living species is far from unique in the animal kingdom. Some kinds of bats home in on flying insects using Doppler sonar. Some kinds of migratory birds navigate thousands of miles by calibrating the positions of the constellations against the time of day and year. In nature’s talent show, we are simply a species of primate with our own act, a knack for communicating information about who did what to whom by modulating the sounds we make when we exhale. Once you begin to look at language not as the ineffable essence of human uniqueness hut as a biological adaptation to communicate information, it is no longer as tempting to see language as an insidious shaper of thought, and, we shall see, it is not. Moreover, seeing language as one of nature’s engineering marvels — an organ with “that perfection of structure and co-adaptation which justly excites our admiration,” in Darwin’s words - gives us a new respect for your ordinary Joe and the much-maligned English language (or any language). The complexity of language, from the scientist’s point of view, is part of our biological birthright; it is not something that parents teach their children or something that must be elaborated in school — as Oscar Wilde said, “Education is an admirable thing, but it is well to remember from time to time that nothing that is worth knowing can be taught.” A preschooler’s tacit knowledge of grammar is more sophisticated than the thickest style manual or the most state-of-the-art computer language system, and the same applies to all healthy human beings, even the notorious syntaxfracturing professional athlete and the, you know, like, inarticulate teenage skateboarder. Finally, since language is the product of a wellengineered biological instinct, we shall see that it is not the nutty barrel of monkeys that entertainercolumnists make it out to be.According to the passage, which of the following does not stem from popular wisdom on language?
 ....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions