1. What is a brownout in an electrical supply system






Write Comment

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->Output of alternators employed in automobile electrical system is regulated by a :....
QA->As per the Mid-day meal programme the meal should supply at least -----of the total energy requirement.....
QA->Name the scheme launched by the Government of India aiming to provide uninterrupted power supply to rural households?....
QA->Which public sector company signed a contract with the Indian Air Force to supply 14 Dornier-228 aircraft?....
QA->The minister of Food and Civil Supply, Environment and Forest, Minority affairs and Election in the Delhi government who was sacked from the post by Chief Minister Arvind Kejriwal on charges of corruption?....
MCQ->What is a brownout in an electrical supply system....
MCQ->A premier B-school, which is in process of getting an AACSB accreditation, has 360 second year students. To incorporate sustainability into their curriculum, it has offered 3 new elective subjects in the second year namely Green Supply Chain, Global Climate Change & Business and Corporate Governance. Twelve students have taken all the three electives, and 120 students have taken Green Supply Chain. There are twice as many students who study Green Supply Chain and Corporate Governance but not Global Climate Change & Business, as those who study both Green Supply Chain and Global Climate Change & Business but not the Corporate Governance, and 4 times as many who study all the three. 124 students.study Corporate Governance. There are 72 students who could not muster up the courage to take up any of these subjects. The group of students who study both Green Supply Chain and Corporate Governance but not Global Climate Change & Business is exactly the same as the group made up of the students who study both Global Climate Change & Business and Corporate governance. How many students study Global Climate Change & Business only?....
MCQ-> Read the following passage carefully and answer the questions given. Certain words have been given in bold to help you locate them while answering some of the questions.We are told that economy is growing and that such growth benefits all of us. However, what you see is not what you always get. Most people are experiencing declining economic security in response to the problems of the global system, many communities have turned to Local Exchange Systems (LESs) to help regain some control over their economic situations.Local exchange systems come in many forms. They often involve the creation of a local currency, or a system of bartering labour, or trading of agricultural products as a means of supporting the region in which they are traded. Such a system helps preserve the viability of local economies.Local currencies allow communities to diversify their economies, reinvest resources back into their region and reduce dependence on the highly concentrated and unstable global economy. Each local currency system serves as an exchange bank for skills and resources that Individuals in the community are willing to trade. Whether in the form of paper money, service credits, or other units, a local currency facilitates the exchange of services and resources among the members of a community.By providing incentives for local trade, communities help their small businesses and reduce underemployment by providing the jobs within the community. In addition, the local exchange of food and seeds promotes environmental conservation and community food security. Local food production reduces wasteful transportation and promotes self-reliance and genetic diversity. Each transaction within a local exchange system strengthens the community fabric as neighbours interact and meet one another.There are over 1,000 local change programs worldwide more than 30 local paper currencies in North America and at least 800 Local Exchange Trading Systems (LETS) throughout Europe. New Zealand and Australia Local Exchange Systems vary and evolve in accordance with the needs and circumstances of the local area. This diversity is critical to the success of the local currencies. For instance, a bank in rural Massachusetts refused to lend a fanner the money needed to make it through the winter. In response, the farmer decided to print his own money Berkshire Farm Preserve Notes. In winter, customers buy the notes for $9 and they may redeem them in the summer for $10 worth of vegetables. The system enabled the community to help a farm family after being abandoned by the centralised monetary system. As small family farms continue to disappear at an alarming rate, local currencies provide tools for communities to bind together, support their local food growers and maintain their local food suppliers.Local Exchange Systems are not limited to developed countries.Rural areas of Asia, Latin America and Africa have offered some of the most effective and important programs, by adopting agriculture-based systems of exchange rather than monetary ones. In order to preserve genetic diversity, economic security and avoid dependence on industrial seed and chemical companies, many villages have developed seed saving exchange banks. For example, the village women in Ladakh have begun to collect and exchange rare seeds selected for their ability to grow in a harsh mountain climate. This exchange system protects agriculture diversity while promoting self-reliance. There is no one blueprint for a local exchange system, which is exactly why they are successful vehicles for localisation and sustainability. They promote local economic diversity and regional self-reliance while responding to a region’s specific needs. Local exchange systems play a pivotal role in creating models for sustainable societies. They are an effective educational tool, raising awareness about the global financial system and local economic matters. Local exchange systems also demonstrate that tangible, creative solutions exist and that communities can empower themselves to address global problems.Which of the following is same in meaning as the word ‘LIMITED TO’ as used in the passage?
 ....
MCQ-> In a modern computer, electronic and magnetic storage technologies play complementary roles. Electronic memory chips are fast but volatile (their contents are lost when the computer is unplugged). Magnetic tapes and hard disks are slower, but have the advantage that they are non-volatile, so that they can be used to store software and documents even when the power is off.In laboratories around the world, however, researchers are hoping to achieve the best of both worlds. They are trying to build magnetic memory chips that could be used in place of today’s electronics. These magnetic memories would be nonvolatile; but they would also he faster, would consume less power, and would be able to stand up to hazardous environments more easily. Such chips would have obvious applications in storage cards for digital cameras and music- players; they would enable handheld and laptop computers to boot up more quickly and to operate for longer; they would allow desktop computers to run faster; they would doubtless have military and space-faring advantages too. But although the theory behind them looks solid, there are tricky practical problems and need to be overcome.Two different approaches, based on different magnetic phenomena, are being pursued. The first, being investigated by Gary Prinz and his colleagues at the Naval Research Laboratory (NRL) in Washington, D.c), exploits the fact that the electrical resistance of some materials changes in the presence of magnetic field— a phenomenon known as magneto- resistance. For some multi-layered materials this effect is particularly powerful and is, accordingly, called “giant” magneto-resistance (GMR). Since 1997, the exploitation of GMR has made cheap multi-gigabyte hard disks commonplace. The magnetic orientations of the magnetised spots on the surface of a spinning disk are detected by measuring the changes they induce in the resistance of a tiny sensor. This technique is so sensitive that it means the spots can be made smaller and packed closer together than was previously possible, thus increasing the capacity and reducing the size and cost of a disk drive. Dr. Prinz and his colleagues are now exploiting the same phenomenon on the surface of memory chips, rather spinning disks. In a conventional memory chip, each binary digit (bit) of data is represented using a capacitor-reservoir of electrical charge that is either empty or fill -to represent a zero or a one. In the NRL’s magnetic design, by contrast, each bit is stored in a magnetic element in the form of a vertical pillar of magnetisable material. A matrix of wires passing above and below the elements allows each to be magnetised, either clockwise or anti-clockwise, to represent zero or one. Another set of wires allows current to pass through any particular element. By measuring an element’s resistance you can determine its magnetic orientation, and hence whether it is storing a zero or a one. Since the elements retain their magnetic orientation even when the power is off, the result is non-volatile memory. Unlike the elements of an electronic memory, a magnetic memory’s elements are not easily disrupted by radiation. And compared with electronic memories, whose capacitors need constant topping up, magnetic memories are simpler and consume less power. The NRL researchers plan to commercialise their device through a company called Non-V olatile Electronics, which recently began work on the necessary processing and fabrication techniques. But it will be some years before the first chips roll off the production line.Most attention in the field in focused on an alternative approach based on magnetic tunnel-junctions (MTJs), which are being investigated by researchers at chipmakers such as IBM, Motorola, Siemens and Hewlett-Packard. IBM’s research team, led by Stuart Parkin, has already created a 500-element working prototype that operates at 20 times the speed of conventional memory chips and consumes 1% of the power. Each element consists of a sandwich of two layers of magnetisable material separated by a barrier of aluminium oxide just four or five atoms thick. The polarisation of lower magnetisable layer is fixed in one direction, but that of the upper layer can be set (again, by passing a current through a matrix of control wires) either to the left or to the right, to store a zero or a one. The polarisations of the two layers are then either the same or opposite directions.Although the aluminum-oxide barrier is an electrical insulator, it is so thin that electrons are able to jump across it via a quantum-mechanical effect called tunnelling. It turns out that such tunnelling is easier when the two magnetic layers are polarised in the same direction than when they are polarised in opposite directions. So, by measuring the current that flows through the sandwich, it is possible to determine the alignment of the topmost layer, and hence whether it is storing a zero or a one.To build a full-scale memory chip based on MTJs is, however, no easy matter. According to Paulo Freitas, an expert on chip manufacturing at the Technical University of Lisbon, magnetic memory elements will have to become far smaller and more reliable than current prototypes if they are to compete with electronic memory. At the same time, they will have to be sensitive enough to respond when the appropriate wires in the control matrix are switched on, but not so sensitive that they respond when a neighbouring elements is changed. Despite these difficulties, the general consensus is that MTJs are the more promising ideas. Dr. Parkin says his group evaluated the GMR approach and decided not to pursue it, despite the fact that IBM pioneered GMR in hard disks. Dr. Prinz, however, contends that his plan will eventually offer higher storage densities and lower production costs.Not content with shaking up the multi-billion-dollar market for computer memory, some researchers have even more ambitious plans for magnetic computing. In a paper published last month in Science, Russell Cowburn and Mark Well and of Cambridge University outlined research that could form the basis of a magnetic microprocessor — a chip capable of manipulating (rather than merely storing) information magnetically. In place of conducting wires, a magnetic processor would have rows of magnetic dots, each of which could be polarised in one of two directions. Individual bits of information would travel down the rows as magnetic pulses, changing the orientation of the dots as they went. Dr. Cowbum and Dr. Welland have demonstrated how a logic gate (the basic element of a microprocessor) could work in such a scheme. In their experiment, they fed a signal in at one end of the chain of dots and used a second signal to control whether it propagated along the chain.It is, admittedly, a long way from a single logic gate to a full microprocessor, but this was true also when the transistor was first invented. Dr. Cowburn, who is now searching for backers to help commercialise the technology, says he believes it will be at least ten years before the first magnetic microprocessor is constructed. But other researchers in the field agree that such a chip, is the next logical step. Dr. Prinz says that once magnetic memory is sorted out “the target is to go after the logic circuits.” Whether all-magnetic computers will ever be able to compete with other contenders that are jostling to knock electronics off its perch — such as optical, biological and quantum computing — remains to be seen. Dr. Cowburn suggests that the future lies with hybrid machines that use different technologies. But computing with magnetism evidently has an attraction all its own.In developing magnetic memory chips to replace the electronic ones, two alternative research paths are being pursued. These are approaches based on:
 ....
MCQ-> Solve the questions based on the information provided in the passage below: Six engineers Anthony, Brad, Carla, Dinesh, Evan and Frank are offered jobs at six different locations –England, Germany, India, Australia, Singapore and UAE. The jobs offered are in six different branches, and are based on their competence as well as preference. The branches are IT, Mechanical, Chemical, Electronics, Metallurgy and Electrical, though not necessarily in the same order. Their placements are subject to the following conditions:i.The engineer in the Electrical Department is not placed in Germany. ii.Anthony is placed in Singapore while Dinesh in UAE. iii.Frank is not in the Metallurgy Department but Brad is in the Chemical Department. iv.Evan is placed in the Mechanical Department while Frank is offered a job in Australia. v.The only department offering jobs in India is the Chemical Department while there are no vacancies for IT in Singapore. vi. Anthony is interested in IT and Electrical Department while Frank is interested in IT and Mechanical Department. Both of them settle for the options available based on their interests in the locations allotted to them. vii. In recent years, UAE has emerged as a hub for metallurgy exports and thus recruitment is done for the same while all mechanical posts are in England.Who joined the Electronics Department?
 ....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions