1. Consider the following statements : According to Bandura I. Reinforcement serves as an antecedent rather than a consequent influence II.Reinforcement functions as an informative and motivational operation III.Reinforcement does not function as a mechanical response strengthener IV. Direct reinforcement is not necessary in order for learning to occur. Of the statements :





Write Comment

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->Consider a Program Graph (PG) with statements as nodes and control as edges. Which of the following is not true for any PG?....
QA->…………….means the annual financial statements and other statements prescribed under Rule 65 of Kerala Panchayat Raj (Accounts) Rules, 2011?....
QA->A is taller than B; B is taller than C; D is taller than E and E is taller than B. Who is the shortest?....
QA->What is the name for a British socialist organization whosepurpose is to advance the principles of democratic socialism via gradualist andreformist, rather than revolutionary means?....
QA->The-------- were India’s first direct military response to attack on Uri army baseby Pakistan-based militants that had killed 18 Indian soldiers.....
MCQ->Consider the following statements : According to Bandura I. Reinforcement serves as an antecedent rather than a consequent influence II.Reinforcement functions as an informative and motivational operation III.Reinforcement does not function as a mechanical response strengthener IV. Direct reinforcement is not necessary in order for learning to occur. Of the statements :....
MCQ-> Analyse the following passage and provide appropriate answers for questions that follow. The understanding that the brain has areas of specialization has brought with it the tendency to teach in ways that reflect these specialized functions. For example, research concerning the specialized functions of the left and right hemispheres has led to left and right hemisphere teaching. Recent research suggests that such an approach neither reflects how the brain learns, nor how it functions once learning has occurred. To the contrary, in most ‘higher vertebrates’ brain systems interact together as a whole brain with the external world. Learning is about making connections within the brain and between the brain and outside world. What does this mean? Until recently, the idea that the neural basis for learning resided in connections between neurons remained a speculation. Now, there is direct evidence that when learning occurs, neuro – chemical communication between neurons is facilitated, and less input is required to activate established connections over time. This evidence also indicates that learning creates connections between not only adjacent neurons but also between distant neurons, and that connections are made from simple circuits to complex ones and from complex circuits to simple ones As connections are formed among adjacent neurons to form circuits, connections also begin to form with neurons in other regions of the brain that are associated with visual, tactile, and even olfactory information related to the sound of the word. Meaning is attributed to ‘sounds of words’ because of these connections. Some of the brain sites for these other neurons are far from the neural circuits that correspond to the component sounds of the words; they include sites in other areas of the left hemisphere and even sites in the right hemisphere. The whole complex of interconnected neurons that are activated by the word is called a neural network. In early stages of learning, neural circuits are activated piecemeal, incompletely, and weakly. It is like getting a glimpse of a partially exposed and blurry picture. With more experience, practice, and exposure, the picture becomes clearer and more detailed. As the exposure is repeated, less input is needed to activate the entire network. With time, activation and recognition become relatively automatic, and the learner can direct her attention to other parts of the task. This also explains why learning takes time. Time is needed to establish new neutral networks and connections between networks. Thi suggests that the neutral mechanism for learning is essentially the same as the products of learning. Learning is a process that establishes new connections among networks. The newly acquired skills or knowledge are nothing but formation of neutral circuits and networks.It can be inferred that, for a nursery student, learning will ...
 ....
MCQ-> Read the following passage carefully and answer the questions given.Do you ever feel there’s is a greater being inside of you bursting to get out? It is the voice that encourages you to really make something of your life. When you act congruently with that voice, it’s like your are a whole new person. You are bold and courageous. You are strong. You are unstoppable. But, then reality sets in, and soon those moments are history. It is not hard to put youself temporarily into an emotionally motivated state. Just listen to that motivational song for that matter. However, this motivation does not stay forever. Your great ideas seem impractical. How many times have you been temporarily inspired with a idea like, “I want to start my own business.” And then a week later it’s forgotten? You come up with inspiring ideas when you are motivated. But you fail to maintain that motivation through the action phase.The problem we ask ourselves is, why does this happen? You can listen to hundereds of motivational speakers and experience an emotional yo-yo effect, but it does not fast. The problem is that as we are intellectually guided, we try to find logic in emotional motivation and as we fail to find logic eventually phases out. I used to get frustrated when my emotional motivation fizzled out after a while. Eventually, I realised that being guided by intellect, was not such a bad thing after all. I just had to learn to use my mind as an effective motivational tool. I figured that if I was not feeling motivated to go after a particular goal, may be there was a logical reason for it. I noted that when I had strong intellectual reasons for doing something. I usually did not have trouble taking action.But when my mind thinks a goal is wrong on some level. I usually feel blocked. I eventually realised that this was my mind’s way of telling me the goal was a mistake to begin with. Sometimes a goal seem to make sense on one level but when you look further upstream, it becomes clear that the goal is ill advised. Suppose you work in sales, and you get a goal to increase your income by 20% by becoming a more effective salesperson. That seems like a reasonable and intelligent goal. But may be you are surprised to find yourself encountering all sorts of internal blocks when you try to pursue it. You should feel motivated, but you just don’t. The problem may be that on a deeper level your mind knows you don’t want to be working in sales at all. You really want to be a musician. Matter how hard you push yourself in sales career, it will always be a motivational dead end.Further when you set goals, that are too small and too timid, you suffer a perpetual lack of motivation. You just need to summon the courage to acknowledge your true desires. Then you will have to deal with the self-doubt and fear that’s been making you think too small. Ironically, the real key to motivation is to set the goals that scare you. You are letting fears, excuses and limiting beliefs hold you back. Your subconscious mind knows you are strong, so it won’t provide any motivational fuel until. You step up, face your fears, and acknowledge your hearts desire. Once you finally decide to face your tears and drop the excuses, then you will find your motivation turning on full blast.What does the author want to convey when he says, “When you look further upstream, it becomes clear that the goal is ill advised.”?
 ....
MCQ-> Read the following passage carefully and answer the questions given below it. Certain words/phrases have been printed in bold to help you locate them while answering some of the questions. The wisdom of learning from failure is incontrovertible. Yet organisations that do it well are extraordinarily rare. This gap is not due to a lack of commitment to learning. Managers in the vast majority of enterprises that I have studied over the past 20 years —pharmaceutical. financial services, product design, telecommunications, and construction companies: hospitals; and NASA’s space shuttle program, among others— genuinely wanted to help their organisations learn from failures to improve future performance. In some cases they and their teams had devoted many hours to afteraction reviews, postmortems, and the like. But time after time I saw that these painstaking efforts led to no real change. The reason: Those managers were thinking about failure the wrong way. Most executives I’ve talked to believe that failure is bad (of course!). They also believe that learning from it is pretty straightforward: Ask people to reflect on what they did wrong and exhort them to avoid similar mistakes in the future—or, better yet, assign a team to review and write a report on what happened and then distribute it throughout the organisation. These widely held beliefs are misguided. First, failure is not always bad. In organisational life it is sometimes bad, sometimes inevitable, and sometimes even good. Second, learning from organisational failures is anything but straightforward. The attitudes and activities required to effectively detect and analyze failures are in short supply in most companies, and the need for context-specific learning strategies is underappreciated. Or – ganisations need new and better ways to go beyond lessons that are superficial (“Procedures weren’t followed”) or self-serving (“The market just wasn’t ready for our great new product”). That means jettisoning old cultural beliefs and stereotypical notions of success and embracing failure’s lessons. Leaders can begin by understanding how the blame game gets in the way. The Blame Game Failure and fault are virtually inseparable in most households. organisations, and cultures. Every child learns at some point that admitting failure means taking the blame. That is why so few organisations have shifted to a culture of psychological safety in which the rewards of learning from failure can be fully realised. Executives I’ve interviewed in organisations as different as hospitals and investment banks admit to being torn: How can they respond constructively to failures without giving rise to an anything-goes attitude? If people aren’t blamed for failures, what will ensure that they try as hard as possible to do their best work? This concern is based on a false dichotomy. In actuality, a culture that makes it safe to admit and report on failure can—and in some organisational contexts must–coexist with high standards for performance. To understand why, look at the exhibit “A Spectrum of Reasons for Failure,” which lists causes ranging from deliberate deviation to thoughtful experimentation. Which of these causes involve blameworthy actions? Deliberate deviance, first on the list, obviously warrants blame. But inattention might not. If it results from a lack of effort, perhaps it’s blameworthy. But if it results from fatigue near the end of an overly long shift, the manager who assigned the shift is more at fault than the employee. As we go down the list, it gets more and more difficult to find blameworthy acts. In fact, a failure resulting from thoughtful experimentation that generates valuable information may actually be praiseworthy. When I ask executives to consider this spectrum and then to estimate how many of the failures in their organisations are truly blameworthy, their answers are usually in single digits—perhaps 2% to 5%. But when I ask how many are treated as blameworthy, they say (after a pause or a laugh) 70% to 90%. The unfortunate consequence is that many failures go unreported and their lessons are lost. Question : sophisticated understanding of failure’s causes and contexts will help to avoid the blame game and institute an effective strategy for learning from failure. Although an infinite number of things can go wrong in organisations, mistakes fall into three broad categories: preventable, complexity-related, and intelligent.Which of the following statement (s) is/are true in the context of the given passage ? I. Most executives believe that failure is bad and learning from it is pretty straightforward. II. The wisdom of learning from failure is disputable. III. Deliberate deviance, first on the list of the exhibit, “A Spectrum of Reasons for Failure” obviously warrants blame.....
MCQ-> The broad scientific understanding today is that our planet is experiencing a warming trend over and above natural and normal variations that is almost certainly due to human activities associated with large-scale manufacturing. The process began in the late 1700s with the Industrial Revolution, when manual labor, horsepower, and water power began to be replaced by or enhanced by machines. This revolution, over time, shifted Britain, Europe, and eventually North America from largely agricultural and trading societies to manufacturing ones, relying on machinery and engines rather than tools and animals.The Industrial Revolution was at heart a revolution in the use of energy and power. Its beginning is usually dated to the advent of the steam engine, which was based on the conversion of chemical energy in wood or coal to thermal energy and then to mechanical work primarily the powering of industrial machinery and steam locomotives. Coal eventually supplanted wood because, pound for pound, coal contains twice as much energy as wood (measured in BTUs, or British thermal units, per pound) and because its use helped to save what was left of the world's temperate forests. Coal was used to produce heat that went directly into industrial processes, including metallurgy, and to warm buildings, as well as to power steam engines. When crude oil came along in the mid- 1800s, still a couple of decades before electricity, it was burned, in the form of kerosene, in lamps to make light replacing whale oil. It was also used to provide heat for buildings and in manufacturing processes, and as a fuel for engines used in industry and propulsion.In short, one can say that the main forms in which humans need and use energy are for light, heat, mechanical work and motive power, and electricity which can be used to provide any of the other three, as well as to do things that none of those three can do, such as electronic communications and information processing. Since the Industrial Revolution, all these energy functions have been powered primarily, but not exclusively, by fossil fuels that emit carbon dioxide (CO2), To put it another way, the Industrial Revolution gave a whole new prominence to what Rochelle Lefkowitz, president of Pro-Media Communications and an energy buff, calls "fuels from hell" - coal, oil, and natural gas. All these fuels from hell come from underground, are exhaustible, and emit CO2 and other pollutants when they are burned for transportation, heating, and industrial use. These fuels are in contrast to what Lefkowitz calls "fuels from heaven" -wind, hydroelectric, tidal, biomass, and solar power. These all come from above ground, are endlessly renewable, and produce no harmful emissions.Meanwhile, industrialization promoted urbanization, and urbanization eventually gave birth to suburbanization. This trend, which was repeated across America, nurtured the development of the American car culture, the building of a national highway system, and a mushrooming of suburbs around American cities, which rewove the fabric of American life. Many other developed and developing countries followed the American model, with all its upsides and downsides. The result is that today we have suburbs and ribbons of highways that run in, out, and around not only America s major cities, but China's, India's, and South America's as well. And as these urban areas attract more people, the sprawl extends in every direction.All the coal, oil, and natural gas inputs for this new economic model seemed relatively cheap, relatively inexhaustible, and relatively harmless-or at least relatively easy to clean up afterward. So there wasn't much to stop the juggernaut of more people and more development and more concrete and more buildings and more cars and more coal, oil, and gas needed to build and power them. Summing it all up, Andy Karsner, the Department of Energy's assistant secretary for energy efficiency and renewable energy, once said to me: "We built a really inefficient environment with the greatest efficiency ever known to man."Beginning in the second half of the twentieth century, a scientific understanding began to emerge that an excessive accumulation of largely invisible pollutants-called greenhouse gases - was affecting the climate. The buildup of these greenhouse gases had been under way since the start of the Industrial Revolution in a place we could not see and in a form we could not touch or smell. These greenhouse gases, primarily carbon dioxide emitted from human industrial, residential, and transportation sources, were not piling up along roadsides or in rivers, in cans or empty bottles, but, rather, above our heads, in the earth's atmosphere. If the earth's atmosphere was like a blanket that helped to regulate the planet's temperature, the CO2 buildup was having the effect of thickening that blanket and making the globe warmer.Those bags of CO2 from our cars float up and stay in the atmosphere, along with bags of CO2 from power plants burning coal, oil, and gas, and bags of CO2 released from the burning and clearing of forests, which releases all the carbon stored in trees, plants, and soil. In fact, many people don't realize that deforestation in places like Indonesia and Brazil is responsible for more CO2 than all the world's cars, trucks, planes, ships, and trains combined - that is, about 20 percent of all global emissions. And when we're not tossing bags of carbon dioxide into the atmosphere, we're throwing up other greenhouse gases, like methane (CH4) released from rice farming, petroleum drilling, coal mining, animal defecation, solid waste landfill sites, and yes, even from cattle belching. Cattle belching? That's right-the striking thing about greenhouse gases is the diversity of sources that emit them. A herd of cattle belching can be worse than a highway full of Hummers. Livestock gas is very high in methane, which, like CO2, is colorless and odorless. And like CO2, methane is one of those greenhouse gases that, once released into the atmosphere, also absorb heat radiating from the earth's surface. "Molecule for molecule, methane's heat-trapping power in the atmosphere is twenty-one times stronger than carbon dioxide, the most abundant greenhouse gas.." reported Science World (January 21, 2002). “With 1.3 billion cows belching almost constantly around the world (100 million in the United States alone), it's no surprise that methane released by livestock is one of the chief global sources of the gas, according to the U.S. Environmental Protection Agency ... 'It's part of their normal digestion process,' says Tom Wirth of the EPA. 'When they chew their cud, they regurgitate [spit up] some food to rechew it, and all this gas comes out.' The average cow expels 600 liters of methane a day, climate researchers report." What is the precise scientific relationship between these expanded greenhouse gas emissions and global warming? Experts at the Pew Center on Climate Change offer a handy summary in their report "Climate Change 101. " Global average temperatures, notes the Pew study, "have experienced natural shifts throughout human history. For example; the climate of the Northern Hemisphere varied from a relatively warm period between the eleventh and fifteenth centuries to a period of cooler temperatures between the seventeenth century and the middle of the nineteenth century. However, scientists studying the rapid rise in global temperatures during the late twentieth century say that natural variability cannot account for what is happening now." The new factor is the human factor-our vastly increased emissions of carbon dioxide and other greenhouse gases from the burning of fossil fuels such as coal and oil as well as from deforestation, large-scale cattle-grazing, agriculture, and industrialization.“Scientists refer to what has been happening in the earth’s atmosphere over the past century as the ‘enhanced greenhouse effect’”, notes the Pew study. By pumping man- made greenhouse gases into the atmosphere, humans are altering the process by which naturally occurring greenhouse gases, because of their unique molecular structure, trap the sun’s heat near the earth’s surface before that heat radiates back into space."The greenhouse effect keeps the earth warm and habitable; without it, the earth's surface would be about 60 degrees Fahrenheit colder on average. Since the average temperature of the earth is about 45 degrees Fahrenheit, the natural greenhouse effect is clearly a good thing. But the enhanced greenhouse effect means even more of the sun's heat is trapped, causing global temperatures to rise. Among the many scientific studies providing clear evidence that an enhanced greenhouse effect is under way was a 2005 report from NASA's Goddard Institute for Space Studies. Using satellites, data from buoys, and computer models to study the earth's oceans, scientists concluded that more energy is being absorbed from the sun than is emitted back to space, throwing the earth's energy out of balance and warming the globe."Which of the following statements is correct? (I) Greenhouse gases are responsible for global warming. They should be eliminated to save the planet (II) CO2 is the most dangerous of the greenhouse gases. Reduction in the release of CO2 would surely bring down the temperature (III) The greenhouse effect could be traced back to the industrial revolution. But the current development and the patterns of life have enhanced their emissions (IV) Deforestation has been one of the biggest factors contributing to the emission of greenhouse gases Choose the correct option:....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions