1. Learning, Memory, Thinking are emphasized in the





Write Comment

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->A person who is too concerned with small details or rules especially when learning or teaching Or one who makes a vain display of his learning, a conceited fellow....
QA->In a memory, the minimum time delay between the initiation of successive memory operations is:....
QA->A byte addressable computer has memory capacity of 4096 KB and can perform 64 operations. An instruction involving 3 memory operands and one operator needs:....
QA->A computer with a 32 bit wide data bus implements its memory using 8 K x 8 static RAM chips. The smallest memory that this computer can have is:....
QA->A computer has 8 MB in main memory, 128 KB cache with block size of 4KB. If direct mapping scheme is used, how many different main memory blocks can map into a given physical cache block?....
MCQ-> Analyse the following passage and provide appropriate answers for questions that follow. The understanding that the brain has areas of specialization has brought with it the tendency to teach in ways that reflect these specialized functions. For example, research concerning the specialized functions of the left and right hemispheres has led to left and right hemisphere teaching. Recent research suggests that such an approach neither reflects how the brain learns, nor how it functions once learning has occurred. To the contrary, in most ‘higher vertebrates’ brain systems interact together as a whole brain with the external world. Learning is about making connections within the brain and between the brain and outside world. What does this mean? Until recently, the idea that the neural basis for learning resided in connections between neurons remained a speculation. Now, there is direct evidence that when learning occurs, neuro – chemical communication between neurons is facilitated, and less input is required to activate established connections over time. This evidence also indicates that learning creates connections between not only adjacent neurons but also between distant neurons, and that connections are made from simple circuits to complex ones and from complex circuits to simple ones As connections are formed among adjacent neurons to form circuits, connections also begin to form with neurons in other regions of the brain that are associated with visual, tactile, and even olfactory information related to the sound of the word. Meaning is attributed to ‘sounds of words’ because of these connections. Some of the brain sites for these other neurons are far from the neural circuits that correspond to the component sounds of the words; they include sites in other areas of the left hemisphere and even sites in the right hemisphere. The whole complex of interconnected neurons that are activated by the word is called a neural network. In early stages of learning, neural circuits are activated piecemeal, incompletely, and weakly. It is like getting a glimpse of a partially exposed and blurry picture. With more experience, practice, and exposure, the picture becomes clearer and more detailed. As the exposure is repeated, less input is needed to activate the entire network. With time, activation and recognition become relatively automatic, and the learner can direct her attention to other parts of the task. This also explains why learning takes time. Time is needed to establish new neutral networks and connections between networks. Thi suggests that the neutral mechanism for learning is essentially the same as the products of learning. Learning is a process that establishes new connections among networks. The newly acquired skills or knowledge are nothing but formation of neutral circuits and networks.It can be inferred that, for a nursery student, learning will ...
 ....
MCQ-> Read the following passage carefully and answer the questions given below it. Certain words/phrases have been printed in bold to help you locate them while answering some of the questions. The wisdom of learning from failure is incontrovertible. Yet organisations that do it well are extraordinarily rare. This gap is not due to a lack of commitment to learning. Managers in the vast majority of enterprises that I have studied over the past 20 years —pharmaceutical. financial services, product design, telecommunications, and construction companies: hospitals; and NASA’s space shuttle program, among others— genuinely wanted to help their organisations learn from failures to improve future performance. In some cases they and their teams had devoted many hours to afteraction reviews, postmortems, and the like. But time after time I saw that these painstaking efforts led to no real change. The reason: Those managers were thinking about failure the wrong way. Most executives I’ve talked to believe that failure is bad (of course!). They also believe that learning from it is pretty straightforward: Ask people to reflect on what they did wrong and exhort them to avoid similar mistakes in the future—or, better yet, assign a team to review and write a report on what happened and then distribute it throughout the organisation. These widely held beliefs are misguided. First, failure is not always bad. In organisational life it is sometimes bad, sometimes inevitable, and sometimes even good. Second, learning from organisational failures is anything but straightforward. The attitudes and activities required to effectively detect and analyze failures are in short supply in most companies, and the need for context-specific learning strategies is underappreciated. Or – ganisations need new and better ways to go beyond lessons that are superficial (“Procedures weren’t followed”) or self-serving (“The market just wasn’t ready for our great new product”). That means jettisoning old cultural beliefs and stereotypical notions of success and embracing failure’s lessons. Leaders can begin by understanding how the blame game gets in the way. The Blame Game Failure and fault are virtually inseparable in most households. organisations, and cultures. Every child learns at some point that admitting failure means taking the blame. That is why so few organisations have shifted to a culture of psychological safety in which the rewards of learning from failure can be fully realised. Executives I’ve interviewed in organisations as different as hospitals and investment banks admit to being torn: How can they respond constructively to failures without giving rise to an anything-goes attitude? If people aren’t blamed for failures, what will ensure that they try as hard as possible to do their best work? This concern is based on a false dichotomy. In actuality, a culture that makes it safe to admit and report on failure can—and in some organisational contexts must–coexist with high standards for performance. To understand why, look at the exhibit “A Spectrum of Reasons for Failure,” which lists causes ranging from deliberate deviation to thoughtful experimentation. Which of these causes involve blameworthy actions? Deliberate deviance, first on the list, obviously warrants blame. But inattention might not. If it results from a lack of effort, perhaps it’s blameworthy. But if it results from fatigue near the end of an overly long shift, the manager who assigned the shift is more at fault than the employee. As we go down the list, it gets more and more difficult to find blameworthy acts. In fact, a failure resulting from thoughtful experimentation that generates valuable information may actually be praiseworthy. When I ask executives to consider this spectrum and then to estimate how many of the failures in their organisations are truly blameworthy, their answers are usually in single digits—perhaps 2% to 5%. But when I ask how many are treated as blameworthy, they say (after a pause or a laugh) 70% to 90%. The unfortunate consequence is that many failures go unreported and their lessons are lost. Question : sophisticated understanding of failure’s causes and contexts will help to avoid the blame game and institute an effective strategy for learning from failure. Although an infinite number of things can go wrong in organisations, mistakes fall into three broad categories: preventable, complexity-related, and intelligent.Which of the following statement (s) is/are true in the context of the given passage ? I. Most executives believe that failure is bad and learning from it is pretty straightforward. II. The wisdom of learning from failure is disputable. III. Deliberate deviance, first on the list of the exhibit, “A Spectrum of Reasons for Failure” obviously warrants blame.....
MCQ-> In a modern computer, electronic and magnetic storage technologies play complementary roles. Electronic memory chips are fast but volatile (their contents are lost when the computer is unplugged). Magnetic tapes and hard disks are slower, but have the advantage that they are non-volatile, so that they can be used to store software and documents even when the power is off.In laboratories around the world, however, researchers are hoping to achieve the best of both worlds. They are trying to build magnetic memory chips that could be used in place of today’s electronics. These magnetic memories would be nonvolatile; but they would also he faster, would consume less power, and would be able to stand up to hazardous environments more easily. Such chips would have obvious applications in storage cards for digital cameras and music- players; they would enable handheld and laptop computers to boot up more quickly and to operate for longer; they would allow desktop computers to run faster; they would doubtless have military and space-faring advantages too. But although the theory behind them looks solid, there are tricky practical problems and need to be overcome.Two different approaches, based on different magnetic phenomena, are being pursued. The first, being investigated by Gary Prinz and his colleagues at the Naval Research Laboratory (NRL) in Washington, D.c), exploits the fact that the electrical resistance of some materials changes in the presence of magnetic field— a phenomenon known as magneto- resistance. For some multi-layered materials this effect is particularly powerful and is, accordingly, called “giant” magneto-resistance (GMR). Since 1997, the exploitation of GMR has made cheap multi-gigabyte hard disks commonplace. The magnetic orientations of the magnetised spots on the surface of a spinning disk are detected by measuring the changes they induce in the resistance of a tiny sensor. This technique is so sensitive that it means the spots can be made smaller and packed closer together than was previously possible, thus increasing the capacity and reducing the size and cost of a disk drive. Dr. Prinz and his colleagues are now exploiting the same phenomenon on the surface of memory chips, rather spinning disks. In a conventional memory chip, each binary digit (bit) of data is represented using a capacitor-reservoir of electrical charge that is either empty or fill -to represent a zero or a one. In the NRL’s magnetic design, by contrast, each bit is stored in a magnetic element in the form of a vertical pillar of magnetisable material. A matrix of wires passing above and below the elements allows each to be magnetised, either clockwise or anti-clockwise, to represent zero or one. Another set of wires allows current to pass through any particular element. By measuring an element’s resistance you can determine its magnetic orientation, and hence whether it is storing a zero or a one. Since the elements retain their magnetic orientation even when the power is off, the result is non-volatile memory. Unlike the elements of an electronic memory, a magnetic memory’s elements are not easily disrupted by radiation. And compared with electronic memories, whose capacitors need constant topping up, magnetic memories are simpler and consume less power. The NRL researchers plan to commercialise their device through a company called Non-V olatile Electronics, which recently began work on the necessary processing and fabrication techniques. But it will be some years before the first chips roll off the production line.Most attention in the field in focused on an alternative approach based on magnetic tunnel-junctions (MTJs), which are being investigated by researchers at chipmakers such as IBM, Motorola, Siemens and Hewlett-Packard. IBM’s research team, led by Stuart Parkin, has already created a 500-element working prototype that operates at 20 times the speed of conventional memory chips and consumes 1% of the power. Each element consists of a sandwich of two layers of magnetisable material separated by a barrier of aluminium oxide just four or five atoms thick. The polarisation of lower magnetisable layer is fixed in one direction, but that of the upper layer can be set (again, by passing a current through a matrix of control wires) either to the left or to the right, to store a zero or a one. The polarisations of the two layers are then either the same or opposite directions.Although the aluminum-oxide barrier is an electrical insulator, it is so thin that electrons are able to jump across it via a quantum-mechanical effect called tunnelling. It turns out that such tunnelling is easier when the two magnetic layers are polarised in the same direction than when they are polarised in opposite directions. So, by measuring the current that flows through the sandwich, it is possible to determine the alignment of the topmost layer, and hence whether it is storing a zero or a one.To build a full-scale memory chip based on MTJs is, however, no easy matter. According to Paulo Freitas, an expert on chip manufacturing at the Technical University of Lisbon, magnetic memory elements will have to become far smaller and more reliable than current prototypes if they are to compete with electronic memory. At the same time, they will have to be sensitive enough to respond when the appropriate wires in the control matrix are switched on, but not so sensitive that they respond when a neighbouring elements is changed. Despite these difficulties, the general consensus is that MTJs are the more promising ideas. Dr. Parkin says his group evaluated the GMR approach and decided not to pursue it, despite the fact that IBM pioneered GMR in hard disks. Dr. Prinz, however, contends that his plan will eventually offer higher storage densities and lower production costs.Not content with shaking up the multi-billion-dollar market for computer memory, some researchers have even more ambitious plans for magnetic computing. In a paper published last month in Science, Russell Cowburn and Mark Well and of Cambridge University outlined research that could form the basis of a magnetic microprocessor — a chip capable of manipulating (rather than merely storing) information magnetically. In place of conducting wires, a magnetic processor would have rows of magnetic dots, each of which could be polarised in one of two directions. Individual bits of information would travel down the rows as magnetic pulses, changing the orientation of the dots as they went. Dr. Cowbum and Dr. Welland have demonstrated how a logic gate (the basic element of a microprocessor) could work in such a scheme. In their experiment, they fed a signal in at one end of the chain of dots and used a second signal to control whether it propagated along the chain.It is, admittedly, a long way from a single logic gate to a full microprocessor, but this was true also when the transistor was first invented. Dr. Cowburn, who is now searching for backers to help commercialise the technology, says he believes it will be at least ten years before the first magnetic microprocessor is constructed. But other researchers in the field agree that such a chip, is the next logical step. Dr. Prinz says that once magnetic memory is sorted out “the target is to go after the logic circuits.” Whether all-magnetic computers will ever be able to compete with other contenders that are jostling to knock electronics off its perch — such as optical, biological and quantum computing — remains to be seen. Dr. Cowburn suggests that the future lies with hybrid machines that use different technologies. But computing with magnetism evidently has an attraction all its own.In developing magnetic memory chips to replace the electronic ones, two alternative research paths are being pursued. These are approaches based on:
 ....
MCQ-> In the following passage, some of the words have been left out. Read the passage carefully and select the correct answer for the given blank out of the four alternatives. According to some philosophers, thinking philosophically is not the same as thinking ______________. Philosophers
  have a passionate ___________ for analytical thinking. On the other hand, most ordinary people do ___________ have a passionate curiosity when it comes to thinking. What they want is to think logically and arrive at a solution. __________ this sense, you do not have to be a philosopher to think philosophically. However, _____________ you are grappling with a problem of great magnitude, you have to think philosophically.same as thinking ______________. Philosophers
 ....
MCQ->Learning, Memory, Thinking are emphasized in the....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions