1. In Newton's rings experiment, if the diameter of 10th ring changes from 1.40 to 1.27 cm when a drop of liquid is introduced between the lens and glass plate, what will be the refractive index of the liquid





Write Comment

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->The refractive index of a piece of transparent quartz is the greatest for which light?....
QA->The refractive index of a given piece of transparent quartz is greatest for which light?....
QA->In case of a friction clutch, the pressure plate is held against the clutch plate by :....
QA->The focal length of the lens in a photographic camera is cm. What is the power of the lens?....
QA->The tendency of liquid drop to contract and why does it occupy minimum area?....
MCQ-> Modern science, exclusive of geometry, is a comparatively recent creation and can be said to have originated with Galileo and Newton. Galileo was the first scientist to recognize clearly that the only way to further our understanding of the physical world was to resort to experiment. However obvious Galileo’s contention may appear in the light of our present knowledge, it remains a fact that the Greeks, in spite of their proficiency in geometry, never seem to have realized the importance of experiment. To a certain extent this may be attributed to the crudeness of their instruments of measurement. Still an excuse of this sort can scarcely be put forward when the elementary nature of Galileo’s experiments and observations is recalled. Watching a lamp oscillate in the cathedral of Pisa, dropping bodies from the leaning tower of Pisa, rolling balls down inclined planes, noticing the magnifying effect of water in a spherical glass vase, such was the nature of Galileo’s experiments and observations. As can be seen, they might just as well have been performed by the Greeks. At any rate, it was thanks to such experiments that Galileo discovered the fundamental law of dynamics, according to which the acceleration imparted to a body is proportional to the force acting upon it.The next advance was due to Newton, the greatest scientist of all time if account be taken of his joint contributions to mathematics and physics. As a physicist, he was of course an ardent adherent of the empirical method, but his greatest title to fame lies in another direction. Prior to Newton, mathematics, chiefly in the form of geometry, had been studied as a fine art without any view to its physical applications other than in very trivial cases. But with Newton all the resources of mathematics were turned to advantage in the solution of physical problems. Thenceforth mathematics appeared as an instrument of discovery, the most powerful one known to man, multiplying the power of thought just as in the mechanical domain the lever multiplied our physical action. It is this application of mathematics to the solution of physical problems, this combination of two separate fields of investigation, which constitutes the essential characteristic of the Newtonian method. Thus problems of physics were metamorphosed into problems of mathematics.But in Newton’s day the mathematical instrument was still in a very backward state of development. In this field again Newton showed the mark of genius by inventing the integral calculus. As a result of this remarkable discovery, problems, which would have baffled Archimedes, were solved with ease. We know that in Newton’s hands this new departure in scientific method led to the discovery of the law of gravitation. But here again the real significance of Newton’s achievement lay not so much in the exact quantitative formulation of the law of attraction, as in his having established the presence of law and order at least in one important realm of nature, namely, in the motions of heavenly bodies. Nature thus exhibited rationality and was not mere blind chaos and uncertainty. To be sure, Newton’s investigations had been concerned with but a small group of natural phenomena, but it appeared unlikely that this mathematical law and order should turn out to be restricted to certain special phenomena; and the feeling was general that all the physical processes of nature would prove to be unfolding themselves according to rigorous mathematical laws.When Einstein, in 1905, published his celebrated paper on the electrodynamics of moving bodies, he remarked that the difficulties, which surrouned the equations of electrodynamics, together with the negative experiments of Michelson and others, would be obviated if we extended the validity of the Newtonian principle of the relativity of Galilean motion, which applies solely to mechanical phenomena, so as to include all manner of phenomena: electrodynamics, optical etc. When extended in this way the Newtonian principle of relativity became Einstein’s special principle of relativity. Its significance lay in its assertion that absolute Galilean motion or absolute velocity must ever escape all experimental detection. Henceforth absolute velocity should be conceived of as physically meaningless, not only in the particular ream of mechanics, as in Newton’s day, but in the entire realm of physical phenomena. Einstein’s special principle, by adding increased emphasis to this relativity of velocity, making absolute velocity metaphysically meaningless, created a still more profound distinction between velocity and accelerated or rotational motion. This latter type of motion remained absolute and real as before. It is most important to understand this point and to realize that Einstein’s special principle is merely an extension of the validity of the classical Newtonian principle to all classes of phenomena.According to the author, why did the Greeks NOT conduct experiments to understand the physical world?
 ....
MCQ->In Newton's rings experiment, if the diameter of 10th ring changes from 1.40 to 1.27 cm when a drop of liquid is introduced between the lens and glass plate, what will be the refractive index of the liquid....
MCQ-> Analyse the following passage and provide appropriate answers for the questions that follow: Each piece, or part, of the whole of nature is always merely an approximation to the complete truth, or the complete truth so far as we know it. In fact, everything we know is only some kind of approximation, because we know that we do not know all the laws as yet. Therefore, things must be learned only to be unlearned again or, more likely, to be corrected. The principal of science, the definition, almost, is the following: The test of all knowledge is experiment. Experiment is the sole judge of scientific “truth.” But what is the source of knowledge? Where do the laws that are to be tested come from? Experiment, itself, helps to produce these laws, in the sense that it gives us hints. But also needed is imagination to create from these laws, in the sense that it gives us hints. But also needed is imagination to create from these hints the great generalizations – to guess at the wonderful, simple, but very strange patterns beneath them all, and then to experiment to check again whether we have made the right guess. This imagining process is so difficult that there is a division of labour in physics: there are theoretical physicists who imagine, deduce, and guess at new laws, but do not experiment; and then there are experimental physicists who experiment, imagine, deduce, and guess. We said that the laws of nature are approximate: that we first find the “wrong” ones, and then we find the “right” ones. Now, how can an experiment be “wrong”? First, in a trivial way: the apparatus can be faulty and you did not notice. But these things are easily fixed and checked back and forth. So without snatching at such minor things, how can the results of an experiment be wrong? Only by being inaccurate. For example, the mass of an object never seems to change; a spinning top has the same weight as a still one. So a “law” was invented: mass is constant, independent of speed. That “law” is now found to be incorrect. Mass is found is to increase with velocity, but appreciable increase requires velocities near that of light. A true law is: if an object moves with a speed of less than one hundred miles a second the mass is constant to within one part in a million. In some such approximate form this is a correct law. So in practice one might think that the new law makes no significant difference. Well, yes and no. For ordinary speeds we can certainly forget it and use the simple constant mass law as a good approximation. But for high speeds we are wrong, and the higher the speed, the wrong we are. Finally, and most interesting, philosophically we are completely wrong with the approximate law. Our entire picture of the world has to be altered even though the mass changes only by a little bit. This is a very peculiar thing about the philosophy, or the ideas, behind the laws. Even a very small effect sometimes requires profound changes to our ideas.Which of the following options is DEFINITLY NOT an approximation to the complete truth?
 ....
MCQ->In Newton’s ring experiment the diameter of mth ring changes from 2 cm to 1 cm when the air space between the lens and the plate is replaced by some transparent liquiThe refractive index of the liquid is:....
MCQ-> Choose the best answer for each question.The production of histories of India has become very frequent in recent years and may well call for some explanation. Why so many and why this one in particular? The reason is a two-fold one: changes in the Indian scene requiring a re-interpretation of the facts and changes in attitudes of historians about the essential elements of Indian history. These two considerations are in addition to the normal fact of fresh information, whether in the form of archeological discoveries throwing fresh light on an obscure period or culture, or the revelations caused by the opening of archives or the release of private papers. The changes in the Indian scene are too obvious to need emphasis. Only two generations ago British rule seemed to most Indian as well as British observers likely to extend into an indefinite future; now there is a teenage generation which knows nothing of it. Changes in the attitudes of historians have occurred everywhere, changes in attitudes to the content of the subject as well as to particular countries, but in India there have been some special features. Prior to the British, Indian historiographers were mostly Muslims, who relied, as in the case of Sayyid Ghulam Hussain, on their own recollection of events and on information from friends and men of affairs. Only a few like Abu’l Fazl had access to official papers. These were personal narratives of events, varying in value with the nature of the writer. The early British writers were officials. In the 18th century they were concerned with some aspect of Company policy, or like Robert Orme in his Military Transactions gave a straight narrative in what was essentially a continuation of the Muslim tradition. In the early 119th century the writers were still, with two notable exceptions, officials, but they were now engaged in chronicling, in varying moods of zest, pride, and awe, the rise of the British power in India to supremacy. The two exceptions were James Mill, with his critical attitude to the Company and John Marchman, the Baptist missionary. But they, like the officials, were anglo-centric in their attitude, so that the history of modern India in their hands came to be the history of the rise of the British in India.The official school dominated the writing of Indian history until we get the first professional historian’s approach. Ramsay Muir and P. E. Roberts in England and H. H. Dodwell in India. Then Indian historians trained in the English school joined in, of whom the most distinguished was Sir Jadunath Sarkar and the other notable writers: Surendranath Sen, Dr Radhakumud Mukherji, and Professor Nilakanta Sastri. They, it may be said, restored India to Indian history, but their bias was mainly political. Finally have come the nationalists who range from those who can find nothing good or true in the British to sophisticated historical philosophers like K. M. Panikker.Along the types of historians with their varying bias have gone changes in the attitude to the content of Indian history. Here Indian historians have been influenced both by their local situation and by changes of thought elsewhere. It is this field that this work can claim some attention since it seeks to break new ground, or perhaps to deepen a freshly turned furrow in the field of Indian history. The early official historians were content with the glamour and drama of political history from Plassey to the Mutiny, from Dupleix to the Sikhs. But when the raj was settled down, glamour departed from politics, and they turned to the less glorious but more solid ground of administration. Not how India was conquered but how it was governed was the theme of this school of historians. It found its archpriest in H. H. Dodwell, its priestess in Dame Lilian Penson, and its chief shrine in the Volume VI of the Cambridge History of India. Meanwhile, in Britain other currents were moving, which led historical study into the economic and social fields. R. C. Dutt entered the first of these currents with his Economic History of India to be followed more recently by the whole group of Indian economic historians. W. E. Moreland extended these studies to the Mughal Period. Social history is now being increasingly studied and there is also of course a school of nationalist historians who see modern Indian history in terms of the rise and the fulfillment of the national movement.All these approaches have value, but all share in the quality of being compartmental. It is not enough to remove political history from its pedestal of being the only kind of history worth having if it is merely to put other types of history in its place. Too exclusive an attention to economic, social, or administrative history can be as sterile and misleading as too much concentration on politics. A whole subject needs a whole treatment for understanding. A historian must dissect his subject into its elements and then fuse them together again into an integrated whole. The true history of a country must contain all the features just cited but must present them as parts of a single consistent theme.Which of the following may be the closest in meaning to the statement ‘restored India to Indian history’?
 ....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions