1. The second figure in the first unit of the problem figures bears a certain relationship to the first figure. Similarly, one of the figures in the answer figures bears the same relationship to either the first or the second figure in the second unit of the problem figures. You are therefore to locate the figure which would fit in the place of the question mark(?).






Write Comment

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->One word Substitution of " Question or problem difficult to answer or understand.....
QA->Question or problem difficult to answer or understand.....
QA->Capable of being understood in either of two or more possible senses and therefore not definite.....
QA->A loose fit between a dry cylinder liner and cylinder block would cause:....
QA->If you scored cannon; which game would you be playing?....
MCQ->The second figure in the first unit of the problem figures bears a certain relationship to the first figure. Similarly, one of the figures in the answer figures bears the same relationship to either the first or the second figure in the second unit of the problem figures. You are therefore to locate the figure which would fit in the place of the question mark(?).....
MCQ-> The first figure in the first unit of the problem figures bears a certain relation ship to the second figure. similarly, one of the figures in the Answer Figures bears the same relationship to the second figure in the second unit of the problem figures, you are, therefore, to locate the figure which would fit in the question mark.....
MCQ-> Read the following passage carefully and answer the questions given.Do you ever feel there’s is a greater being inside of you bursting to get out? It is the voice that encourages you to really make something of your life. When you act congruently with that voice, it’s like your are a whole new person. You are bold and courageous. You are strong. You are unstoppable. But, then reality sets in, and soon those moments are history. It is not hard to put youself temporarily into an emotionally motivated state. Just listen to that motivational song for that matter. However, this motivation does not stay forever. Your great ideas seem impractical. How many times have you been temporarily inspired with a idea like, “I want to start my own business.” And then a week later it’s forgotten? You come up with inspiring ideas when you are motivated. But you fail to maintain that motivation through the action phase.The problem we ask ourselves is, why does this happen? You can listen to hundereds of motivational speakers and experience an emotional yo-yo effect, but it does not fast. The problem is that as we are intellectually guided, we try to find logic in emotional motivation and as we fail to find logic eventually phases out. I used to get frustrated when my emotional motivation fizzled out after a while. Eventually, I realised that being guided by intellect, was not such a bad thing after all. I just had to learn to use my mind as an effective motivational tool. I figured that if I was not feeling motivated to go after a particular goal, may be there was a logical reason for it. I noted that when I had strong intellectual reasons for doing something. I usually did not have trouble taking action.But when my mind thinks a goal is wrong on some level. I usually feel blocked. I eventually realised that this was my mind’s way of telling me the goal was a mistake to begin with. Sometimes a goal seem to make sense on one level but when you look further upstream, it becomes clear that the goal is ill advised. Suppose you work in sales, and you get a goal to increase your income by 20% by becoming a more effective salesperson. That seems like a reasonable and intelligent goal. But may be you are surprised to find yourself encountering all sorts of internal blocks when you try to pursue it. You should feel motivated, but you just don’t. The problem may be that on a deeper level your mind knows you don’t want to be working in sales at all. You really want to be a musician. Matter how hard you push yourself in sales career, it will always be a motivational dead end.Further when you set goals, that are too small and too timid, you suffer a perpetual lack of motivation. You just need to summon the courage to acknowledge your true desires. Then you will have to deal with the self-doubt and fear that’s been making you think too small. Ironically, the real key to motivation is to set the goals that scare you. You are letting fears, excuses and limiting beliefs hold you back. Your subconscious mind knows you are strong, so it won’t provide any motivational fuel until. You step up, face your fears, and acknowledge your hearts desire. Once you finally decide to face your tears and drop the excuses, then you will find your motivation turning on full blast.What does the author want to convey when he says, “When you look further upstream, it becomes clear that the goal is ill advised.”?
 ....
MCQ->The second figure in the first pair of problem figures bears a certain relationship to the first figure. Similarly, one of the figures in the answer figures bears the same relationship to the first figure, in the second pair of the problem figures. You have to locate the figure which would fit into the blank space and give it as your answer. ....
MCQ-> In a modern computer, electronic and magnetic storage technologies play complementary roles. Electronic memory chips are fast but volatile (their contents are lost when the computer is unplugged). Magnetic tapes and hard disks are slower, but have the advantage that they are non-volatile, so that they can be used to store software and documents even when the power is off.In laboratories around the world, however, researchers are hoping to achieve the best of both worlds. They are trying to build magnetic memory chips that could be used in place of today’s electronics. These magnetic memories would be nonvolatile; but they would also he faster, would consume less power, and would be able to stand up to hazardous environments more easily. Such chips would have obvious applications in storage cards for digital cameras and music- players; they would enable handheld and laptop computers to boot up more quickly and to operate for longer; they would allow desktop computers to run faster; they would doubtless have military and space-faring advantages too. But although the theory behind them looks solid, there are tricky practical problems and need to be overcome.Two different approaches, based on different magnetic phenomena, are being pursued. The first, being investigated by Gary Prinz and his colleagues at the Naval Research Laboratory (NRL) in Washington, D.c), exploits the fact that the electrical resistance of some materials changes in the presence of magnetic field— a phenomenon known as magneto- resistance. For some multi-layered materials this effect is particularly powerful and is, accordingly, called “giant” magneto-resistance (GMR). Since 1997, the exploitation of GMR has made cheap multi-gigabyte hard disks commonplace. The magnetic orientations of the magnetised spots on the surface of a spinning disk are detected by measuring the changes they induce in the resistance of a tiny sensor. This technique is so sensitive that it means the spots can be made smaller and packed closer together than was previously possible, thus increasing the capacity and reducing the size and cost of a disk drive. Dr. Prinz and his colleagues are now exploiting the same phenomenon on the surface of memory chips, rather spinning disks. In a conventional memory chip, each binary digit (bit) of data is represented using a capacitor-reservoir of electrical charge that is either empty or fill -to represent a zero or a one. In the NRL’s magnetic design, by contrast, each bit is stored in a magnetic element in the form of a vertical pillar of magnetisable material. A matrix of wires passing above and below the elements allows each to be magnetised, either clockwise or anti-clockwise, to represent zero or one. Another set of wires allows current to pass through any particular element. By measuring an element’s resistance you can determine its magnetic orientation, and hence whether it is storing a zero or a one. Since the elements retain their magnetic orientation even when the power is off, the result is non-volatile memory. Unlike the elements of an electronic memory, a magnetic memory’s elements are not easily disrupted by radiation. And compared with electronic memories, whose capacitors need constant topping up, magnetic memories are simpler and consume less power. The NRL researchers plan to commercialise their device through a company called Non-V olatile Electronics, which recently began work on the necessary processing and fabrication techniques. But it will be some years before the first chips roll off the production line.Most attention in the field in focused on an alternative approach based on magnetic tunnel-junctions (MTJs), which are being investigated by researchers at chipmakers such as IBM, Motorola, Siemens and Hewlett-Packard. IBM’s research team, led by Stuart Parkin, has already created a 500-element working prototype that operates at 20 times the speed of conventional memory chips and consumes 1% of the power. Each element consists of a sandwich of two layers of magnetisable material separated by a barrier of aluminium oxide just four or five atoms thick. The polarisation of lower magnetisable layer is fixed in one direction, but that of the upper layer can be set (again, by passing a current through a matrix of control wires) either to the left or to the right, to store a zero or a one. The polarisations of the two layers are then either the same or opposite directions.Although the aluminum-oxide barrier is an electrical insulator, it is so thin that electrons are able to jump across it via a quantum-mechanical effect called tunnelling. It turns out that such tunnelling is easier when the two magnetic layers are polarised in the same direction than when they are polarised in opposite directions. So, by measuring the current that flows through the sandwich, it is possible to determine the alignment of the topmost layer, and hence whether it is storing a zero or a one.To build a full-scale memory chip based on MTJs is, however, no easy matter. According to Paulo Freitas, an expert on chip manufacturing at the Technical University of Lisbon, magnetic memory elements will have to become far smaller and more reliable than current prototypes if they are to compete with electronic memory. At the same time, they will have to be sensitive enough to respond when the appropriate wires in the control matrix are switched on, but not so sensitive that they respond when a neighbouring elements is changed. Despite these difficulties, the general consensus is that MTJs are the more promising ideas. Dr. Parkin says his group evaluated the GMR approach and decided not to pursue it, despite the fact that IBM pioneered GMR in hard disks. Dr. Prinz, however, contends that his plan will eventually offer higher storage densities and lower production costs.Not content with shaking up the multi-billion-dollar market for computer memory, some researchers have even more ambitious plans for magnetic computing. In a paper published last month in Science, Russell Cowburn and Mark Well and of Cambridge University outlined research that could form the basis of a magnetic microprocessor — a chip capable of manipulating (rather than merely storing) information magnetically. In place of conducting wires, a magnetic processor would have rows of magnetic dots, each of which could be polarised in one of two directions. Individual bits of information would travel down the rows as magnetic pulses, changing the orientation of the dots as they went. Dr. Cowbum and Dr. Welland have demonstrated how a logic gate (the basic element of a microprocessor) could work in such a scheme. In their experiment, they fed a signal in at one end of the chain of dots and used a second signal to control whether it propagated along the chain.It is, admittedly, a long way from a single logic gate to a full microprocessor, but this was true also when the transistor was first invented. Dr. Cowburn, who is now searching for backers to help commercialise the technology, says he believes it will be at least ten years before the first magnetic microprocessor is constructed. But other researchers in the field agree that such a chip, is the next logical step. Dr. Prinz says that once magnetic memory is sorted out “the target is to go after the logic circuits.” Whether all-magnetic computers will ever be able to compete with other contenders that are jostling to knock electronics off its perch — such as optical, biological and quantum computing — remains to be seen. Dr. Cowburn suggests that the future lies with hybrid machines that use different technologies. But computing with magnetism evidently has an attraction all its own.In developing magnetic memory chips to replace the electronic ones, two alternative research paths are being pursued. These are approaches based on:
 ....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions