1. The nimbus formed a special feature of Mughal portraiture under?





Write Comment

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->A three member Special Investigation Team (SIT) under Pramod Asthana been formed by the Ministry of Home Affairs for re-investigation of which cases?....
QA->In which festival are boat races a special feature?....
QA->IN WHICH YEAR A SPECIAL MINISTRY FOR WOMAN AND SOCIAL WELFARE WAS FORMED IN INDIA....
QA->Malabar Special Police was formed in:....
QA->Under which reign did Mughal Empire extend up to Tamil territory in the South?....
MCQ->The nimbus formed a special feature of Mughal portraiture under?....
MCQ->Choose the best way of writing the sentence.A. The distinctive feature of tariffs and export subsidies is that they create difference of prices at which goods are traded on the world market and their price within a local market.B. The distinctive feature of tarriffs and export subsidies is that they create a difference of prices at which goods are traded with the world market and their prices in the local market.C. The distinctive feature of tariffs and export subsidies is that they create a difference between prices at which goods are traded on the world market and their prices within a local market.D. The distinctive feature of tarriffs and export subsidies is that they create a difference across prices at which goods are traded with the world market and their prices within a local market.....
MCQ-> Answer question based on the following information:On a certain day six passengers from Chennai, Bangalore, Kochi, Kolkata, Mumbai, and Hyderabad boarded the New Delhi bound Rajdhani Express from TataNagar. The following facts are known about these six passengers:1.The persons from Kochi and Chennai are less than 36 years of age. Person Z, the youngest among all is a doctor.2.The oldest person is from Kolkata and his/her profession is same as that of the person who got down at Mughal Sarai. 3.The person from Bangalore, Chennai, Hyderabad and Mumbai got down at four different stations. The eldest among these four got down at Koderma and the youngest at Kanpur. The person who got down at New Delhi is older than the person who got down at Mughal Sarai. 4. The engineer from Bangalore is older than the engineer from Chennai.5. While arranging the teachers in increasing order of age it was observed that the middle person is as old as the engineer from Chennai.6.Person Y who got down at Mughal Sarai is less than 34 year old.7.The teacher from Kochi is four year older than the 31 year old doctor who is not from Mumbai.8.In the past, three of the travellers have served in the Indian Army.Which of the following options is true?
 ....
MCQ-> Directions :In the following passage, you have one brief passage with 5 questions following the passage. Read the passage carefully and choose the best answer to each question out of the four alternatives. PASSAGE : Every profession or, trade, every art and every science has its technical vocabulary, the function of which is partly to designate things or processes which have no names in ordinary English and partly to secure greater exactness in nomenclature. Such special dialects or jargons are necessary in technical discussion of any kind. Being universally understood by the devotees of the particular science or art, they have the precision of a mathematical formula. Besides, they save time, for it is much more economical to name a process than to describe it. Thousands of these technical terms are very properly included in every large dictionary, yet, as a whole, they are rather on the outskirts of the English language than actually within its borders. Different occupations, however, differ widely in the character of their special vocabularies. In trades and handicrafts and other vocations like farming and fishing that have occupied great numbers of men from remote times, the technical vocabulary is very old. An average man now uses these in his own vocabulary. The special dialects of law, medicine, divinity and philosophy have become familiar to cultivated persons.Special words used in technical discussion
 ....
MCQ-> Modern science, exclusive of geometry, is a comparatively recent creation and can be said to have originated with Galileo and Newton. Galileo was the first scientist to recognize clearly that the only way to further our understanding of the physical world was to resort to experiment. However obvious Galileo’s contention may appear in the light of our present knowledge, it remains a fact that the Greeks, in spite of their proficiency in geometry, never seem to have realized the importance of experiment. To a certain extent this may be attributed to the crudeness of their instruments of measurement. Still an excuse of this sort can scarcely be put forward when the elementary nature of Galileo’s experiments and observations is recalled. Watching a lamp oscillate in the cathedral of Pisa, dropping bodies from the leaning tower of Pisa, rolling balls down inclined planes, noticing the magnifying effect of water in a spherical glass vase, such was the nature of Galileo’s experiments and observations. As can be seen, they might just as well have been performed by the Greeks. At any rate, it was thanks to such experiments that Galileo discovered the fundamental law of dynamics, according to which the acceleration imparted to a body is proportional to the force acting upon it.The next advance was due to Newton, the greatest scientist of all time if account be taken of his joint contributions to mathematics and physics. As a physicist, he was of course an ardent adherent of the empirical method, but his greatest title to fame lies in another direction. Prior to Newton, mathematics, chiefly in the form of geometry, had been studied as a fine art without any view to its physical applications other than in very trivial cases. But with Newton all the resources of mathematics were turned to advantage in the solution of physical problems. Thenceforth mathematics appeared as an instrument of discovery, the most powerful one known to man, multiplying the power of thought just as in the mechanical domain the lever multiplied our physical action. It is this application of mathematics to the solution of physical problems, this combination of two separate fields of investigation, which constitutes the essential characteristic of the Newtonian method. Thus problems of physics were metamorphosed into problems of mathematics.But in Newton’s day the mathematical instrument was still in a very backward state of development. In this field again Newton showed the mark of genius by inventing the integral calculus. As a result of this remarkable discovery, problems, which would have baffled Archimedes, were solved with ease. We know that in Newton’s hands this new departure in scientific method led to the discovery of the law of gravitation. But here again the real significance of Newton’s achievement lay not so much in the exact quantitative formulation of the law of attraction, as in his having established the presence of law and order at least in one important realm of nature, namely, in the motions of heavenly bodies. Nature thus exhibited rationality and was not mere blind chaos and uncertainty. To be sure, Newton’s investigations had been concerned with but a small group of natural phenomena, but it appeared unlikely that this mathematical law and order should turn out to be restricted to certain special phenomena; and the feeling was general that all the physical processes of nature would prove to be unfolding themselves according to rigorous mathematical laws.When Einstein, in 1905, published his celebrated paper on the electrodynamics of moving bodies, he remarked that the difficulties, which surrouned the equations of electrodynamics, together with the negative experiments of Michelson and others, would be obviated if we extended the validity of the Newtonian principle of the relativity of Galilean motion, which applies solely to mechanical phenomena, so as to include all manner of phenomena: electrodynamics, optical etc. When extended in this way the Newtonian principle of relativity became Einstein’s special principle of relativity. Its significance lay in its assertion that absolute Galilean motion or absolute velocity must ever escape all experimental detection. Henceforth absolute velocity should be conceived of as physically meaningless, not only in the particular ream of mechanics, as in Newton’s day, but in the entire realm of physical phenomena. Einstein’s special principle, by adding increased emphasis to this relativity of velocity, making absolute velocity metaphysically meaningless, created a still more profound distinction between velocity and accelerated or rotational motion. This latter type of motion remained absolute and real as before. It is most important to understand this point and to realize that Einstein’s special principle is merely an extension of the validity of the classical Newtonian principle to all classes of phenomena.According to the author, why did the Greeks NOT conduct experiments to understand the physical world?
 ....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions