1. Antonym of " grow " :

Answer: sick

Reply

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->Antonym of " grow " :....
QA->antonym of word " grow " is ?....
QA->The tendency of Plants to grow towards light:....
QA->The finger nails grow around ... cm a week?....
QA->PLANTS GROW IN SALINE WATER IS KNOWN AS....
MCQ-> Read the following passage carefully and answer the questions given below it. Certain words are printed in bold to help you to locate them while answering some of the questions.Long ago, the country of Gandhara was ruled by a just and good king Vidyadhara. His subjects were very happy, but as the king grew older, everyone grew more and more worried because the king did not have any children who could take over the kingdom after him. The king was an avid gardener. He spent a lot of time tending to his garden. planting the finest flowers. fruit trees and vegetables. One day. after he finished working in his garden, he proclaimed, ‘I will distribute some seeds to all the children in the kingdom. The one who grows the biggest, healthiest plant within three months will become the price or the princess'. The next day there was a long queue of anxious parents and children outside the palace. Everyone was eager to get a seed arid grow the best plant. Pingala, a poor farmer’s son. was among the children. Like the king, he too was fond of gardening and grew beautiful plants in his backyard. He took the seed from the king and planted it in a pot with great care. Some weeks passed and he plied it with water and manure. but the plant did not appear. Pingala tried changing the soil and transferred the seed to another pot, but even by the end of three months nothing appeared. At last the day came when all the children had to go to the king to show the plant they had grown. They went walking to the palace dressed in their best, holding beautiful plants in their hands. Only Pingala stood sadly, watching them go by. Pingala’s father had watched his son working hard with the seed and lelt sorry for him. ‘Why don’t you go to the king with your empty pot ?’ he suggested. At least he will know you tried your best So Pingala too wore his best suit and joined the others outside the palace, holding his empty pot in his hand and ignoring the laughter around him. Soon the king arrived and began his inspection, The pots held flowers of different shades, beautiful and healthy. but the king did not look happy. At the end of the queue stood Pingala, and when the king reached him, he stopped in surprise. ‘My son, why have you come with an empty pot ? Could you not grow anything? Pingala looked down and said, ‘Forgive me, your highness. I tried my best, I gave it the best soil and manure I had, but the plant would not grow.’ Now the king’s face broke into a smile. He enveloped Pingala in his arms and announced, 'This boy truly deserves to be crowned the prince! I had given everyone roasted seeds, which would never grow. I wanted to see which child was the most honest one, and would admit he or she would not be able to grow anything. Only this young boy told the truth. I am sure he will rule this kingdom one day with truth and honesty'. And indeed that was what happened. When the king grew old and died. Pingala, who had learnt everything from him, came to the throne and ruled Gandhara justly for many years.Why did the king distribute seeds to all the children in his kingdom ?
 ...
MCQ-> Read the following passage carefully and answer the questions given below it. Certain words/phrases have been printed in bold tohelp you locate them while answering some of the questions. During the last few years, a lot of hype has been heaped on the BRICS (Brazil, Russia, India, China, and South Africa). With their large populations and rapid growth, these countries, so the argument goes, will soon become some of the largest economies in the world and, in the case of China, the largest of all by as early as 2020. But the BRICS, as well as many other emerging-market economieshave recently experienced a sharp economic slowdown. So, is the honeymoon over? Brazil’s GDP grew by only 1% last year, and may not grow by more than 2% this year, with its potential growth barely above 3%. Russia’s economy may grow by barely 2% this year, with potential growth also at around 3%, despite oil prices being around $100 a barrel. India had a couple of years of strong growth recently (11.2% in 2010 and 7.7% in 2011) but slowed to 4% in 2012. China’s economy grew by 10% a year for the last three decades, but slowed to 7.8% last year and risks a hard landing. And South Africa grew by only 2.5% last year and may not grow faster than 2% this year. Many other previously fast-growing emerging-market economies – for example, Turkey, Argentina, Poland, Hungary, and many in Central and Eastern Europe are experiencing a similar slowdown. So, what is ailing the BRICS and other emerging markets? First, most emerging-market economies were overheating in 2010-2011, with growth above potential and inflation rising and exceeding targets. Many of them thus tightened monetary policy in 2011, with consequences for growth in 2012 that have carried over into this year. Second, the idea that emerging-market economies could fully decouple from economic weakness in advanced economies was farfetched : recession in the eurozone, near-recession in the United Kingdom and Japan in 2011-2012, and slow economic growth in the United States were always likely to affect emerging market performance negatively – via trade, financial links, and investor confidence. For example, the ongoing euro zone downturn has hurt Turkey and emergingmarket economies in Central and Eastern Europe, owing to trade links. Third, most BRICS and a few other emerging markets have moved toward a variant of state capitalism. This implies a slowdown in reforms that increase the private sector’s productivity and economic share, together with a greater economic role for state-owned enterprises (and for state-owned banks in the allocation of credit and savings), as well as resource nationalism, trade protectionism, import substitution industrialization policies, and imposition of capital controls. This approach may have worked at earlier stages of development and when the global financial crisis caused private spending to fall; but it is now distorting economic activity and depressing potential growth. Indeed, China’s slowdown reflects an economic model that is, as former Premier Wen Jiabao put it, “unstable, unbalanced, uncoordinated, and unsustainable,” and that now is adversely affecting growth in emerging Asia and in commodity-exporting emerging markets from Asia to Latin America and Africa. The risk that China will experience a hard landing in the next two years may further hurt many emerging economies. Fourth, the commodity super-cycle that helped Brazil, Russia, South Africa, and many other commodity-exporting emerging markets may be over. Indeed, a boom would be difficult to sustain, given China’s slowdown, higher investment in energysaving technologies, less emphasis on capital-and resource-oriented growth models around the world, and the delayed increase in supply that high prices induced. The fifth, and most recent, factor is the US Federal Reserve’s signals that it might end its policy of quantitative easing earlier than expected, and its hints of an even tual exit from zero interest rates. both of which have caused turbulence in emerging economies’ financial markets. Even before the Fed’s signals, emergingmarket equities and commodities had underperformed this year, owing to China’s slowdown. Since then, emerging-market currencies and fixed-income securities (government and corporate bonds) have taken a hit. The era of cheap or zerointerest money that led to a wall of liquidity chasing high yields and assets equities, bonds, currencies, and commodities – in emerging markets is drawing to a close. Finally, while many emerging-market economies tend to run current-account surpluses, a growing number of them – including Turkey, South Africa, Brazil, and India – are running deficits. And these deficits are now being financed in riskier ways: more debt than equity; more short-term debt than longterm debt; more foreign-currency debt than local-currency debt; and more financing from fickle cross-border interbank flows. These countries share other weaknesses as well: excessive fiscal deficits, abovetarget inflation, and stability risk (reflected not only in the recent political turmoil in Brazil and Turkey, but also in South Africa’s labour strife and India’s political and electoral uncertainties). The need to finance the external deficit and to avoid excessive depreciation (and even higher inflation) calls for raising policy rates or keeping them on hold at high levels. But monetary tightening would weaken already-slow growth. Thus, emerging economies with large twin deficits and other macroeconomic fragilities may experience further downward pressure on their financial markets and growth rates. These factors explain why growth in most BRICS and many other emerging markets has slowed sharply. Some factors are cyclical, but others – state capitalism, the risk of a hard landing in China, the end of the commodity supercycle -are more structural. Thus, many emerging markets’ growth rates in the next decade may be lower than in the last – as may the outsize returns that investors realised from these economies’ financial assets (currencies, equities. bonds, and commodities). Of course, some of the better-managed emerging-market economies will continue to experitnce rapid growth and asset outperformance. But many of the BRICS, along with some other emerging economies, may hit a thick wall, with growth and financial markets taking a serious beating.Which of the following statement(s) is/are true as per the given information in the passage ? A. Brazil’s GDP grew by only 1% last year, and is expected to grow by approximately 2% this year. B. China’s economy grew by 10% a year for the last three decades but slowed to 7.8% last year. C. BRICS is a group of nations — Barzil, Russia, India China and South Africa....
MCQ->Which of the following strain(s), that grow in the jellies and candid fruits, are able to grow in sugar concentration upto 67.5%?...
MCQ-> The income disparity in the new India is massive: 36 billionaires in India and 800 million people living on less than $2 a day. The challenge for achieving inclusive growth relates to the revival of agriculture. Farming is becoming a non-viable activity. A confluence of factors, from poor rainfall to the new availability of consumer goods which consume much of Indian familie's incomes, has driven many farmers into crushing debt. The agriculture sector has many problems with a growth rate of less than 2% in the last decade. Further scope for increase in net sown area is limited. Disparity in productivity across regions and crops has persisted. Far from benefiting from the economic boom, many complain that banks don't offer the rural poor credit, forcing them to turn to greedy money-lenders, who typically charge up to 20% interest on a four-month loan. Healthcare and education costs have risen dramatically, while the global price of cotton has become depressed, largely due to the billions of dollars in subsidies Washington hands out to U.S. farmers. The approach to the revival of Indian agriculture seems to be incremental, rather than a holistic strategy. It is important to stress that growth and equity should be pursued simultaneously rather than following the 'growth first and equity next' approach. What are the challenges for achieving 4% growth and equity in agriculture? Policy makers like the National Commission on Farmers mention cost reduction in agriculture as important to compete in a globalised world. The most important problem for the farmers is output price fluctuations. There is a big gap between producer prices and consumer prices. In order to protect farmers from National and international price volatility, a price stabilization fund is needed. The supply and demand side constraints have to be removed to raise growth. The support systems have to be tuned to improve productivity and incomes of farmers with emphasis on small and marginal farmers and dry land areas. One of the differences between the green revolution in the 1960s / 70s and the present 'second green revolution' is that risk is higher in the latter approach as it has to concentrate more on dry-land areas. Trade liberalisation has also raised the risk and uncertainty. Thus, policymakers have to keep in mind the increasing risk in agriculture. Agriculture policies have to be gender sensitive too since the share of women is increasing. The Government is aware that the crop sector may not be able to grow at 4% per annum but horticulture and allied activities like dairying, poultry and fisheries have to grow at the rate 6 % to 7 % to achieve 4% growth in agriculture. Investment in irrigation and rural infrastructure is important for agricultural growth. It is known that public investment in agriculture is lower than the requirements needed for achieving 4% growth. Bharat Nirman Programme is in the right direction but the progress has to be much fasterWhat does the author view as a challenge for achieving inclusive growth?
 ...
MCQ-> Cells are the ultimate multi-taskers: they can switch on genes and carry out their orders, talk to each other, divide in two, and much more, all at the same time. But they couldn’t do any of these tricks without a power source to generate movement. The inside of a cell bustles with more traffic than Delhi roads, and, like all vehicles, the cell’s moving parts need engines. Physicists and biologists have looked ‘under the hood’ of the cell and laid out the nuts and bolts of molecular engines.The ability of such engines to convert chemical energy into motion is the envy nanotechnology researchers looking for ways to power molecule-sized devices. Medical researchers also want to understand how these engines work. Because these molecules are essential for cell division, scientists hope to shut down the rampant growth of cancer cells by deactivating certain motors. Improving motor-driven transport in nerve cells may also be helpful for treating diseases such as Alzheimer’s, Parkinson’s or ALS, also known as Lou Gehrig’s disease.We wouldn’t make it far in life without motor proteins. Our muscles wouldn’t contract. We couldn’t grow, because the growth process requires cells to duplicate their machinery and pull the copies apart. And our genes would be silent without the services of messenger RNA, which carries genetic instructions over to the cell’s protein-making factories. The movements that make these cellular activities possible occur along a complex network of threadlike fibers, or polymers, along which bundles of molecules travel like trams. The engines that power the cell’s freight are three families of proteins, called myosin, kinesin and dynein. For fuel, these proteins burn molecules of ATP, which cells make when they break down the carbohydrates and fats from the foods we eat. The energy from burning ATP causes changes in the proteins’ shape that allow them to heave themselves along the polymer track. The results are impressive: In one second, these molecules can travel between 50 and 100 times their own diameter. If a car with a five-foot-wide engine were as efficient, it would travel 170 to 340 kilometres per hour.Ronald Vale, a researcher at the Howard Hughes Medical Institute and the University of California at San Francisco, and Ronald Milligan of the Scripps Research Institute have realized a long-awaited goal by reconstructing the process by which myosin and kinesin move, almost down to the atom. The dynein motor, on the other hand, is still poorly understood. Myosin molecules, best known for their role in muscle contraction, form chains that lie between filaments of another protein called actin. Each myosin molecule has a tiny head that pokes out from the chain like oars from a canoe. Just as rowers propel their boat by stroking their oars through the water, the myosin molecules stick their heads into the actin and hoist themselves forward along the filament. While myosin moves along in short strokes, its cousin kinesin walks steadily along a different type of filament called a microtubule. Instead of using a projecting head as a lever, kinesin walks on two ‘legs’. Based on these differences, researchers used to think that myosin and kinesin were virtually unrelated. But newly discovered similarities in the motors’ ATP-processing machinery now suggest that they share a common ancestor — molecule. At this point, scientists can only speculate as to what type of primitive cell-like structure this ancestor occupied as it learned to burn ATP and use the energy to change shape. “We’ll never really know, because we can’t dig up the remains of ancient proteins, but that was probably a big evolutionary leap,” says Vale.On a slightly larger scale, loner cells like sperm or infectious bacteria are prime movers that resolutely push their way through to other cells. As L. Mahadevan and Paul Matsudaira of the Massachusetts Institute of Technology explain, the engines in this case are springs or ratchets that are clusters of molecules, rather than single proteins like myosin and kinesin. Researchers don’t yet fully understand these engines’ fueling process or the details of how they move, but the result is a force to be reckoned with. For example, one such engine is a spring-like stalk connecting a single-celled organism called a vorticellid to the leaf fragment it calls home. When exposed to calcium, the spring contracts, yanking the vorticellid down at speeds approaching three inches (eight centimetres) per second.Springs like this are coiled bundles of filaments that expand or contract in response to chemical cues. A wave of positively charged calcium ions, for example, neutralizes the negative charges that keep the filaments extended. Some sperm use spring-like engines made of actin filaments to shoot out a barb that penetrates the layers that surround an egg. And certain viruses use a similar apparatus to shoot their DNA into the host’s cell. Ratchets are also useful for moving whole cells, including some other sperm and pathogens. These engines are filaments that simply grow at one end, attracting chemical building blocks from nearby. Because the other end is anchored in place, the growing end pushes against any barrier that gets in its way.Both springs and ratchets are made up of small units that each move just slightly, but collectively produce a powerful movement. Ultimately, Mahadevan and Matsudaira hope to better understand just how these particles create an effect that seems to be so much more than the sum of its parts. Might such an understanding provide inspiration for ways to power artificial nano-sized devices in the future? “The short answer is absolutely,” says Mahadevan. “Biology has had a lot more time to evolve enormous richness in design for different organisms. Hopefully, studying these structures will not only improve our understanding of the biological world, it will also enable us to copy them, take apart their components and recreate them for other purpose.”According to the author, research on the power source of movement in cells can contribute to
 ...
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions