1. Which disease is also known in the names pyrosis and cardialgia?

Answer: Heartburn

Reply

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->Which disease is also known in the names pyrosis and cardialgia?....
QA->Which vitamin deficiency disease is also known in the names of "Barlow"s Disease & Cheadle"s disease?....
QA->Which chemical is also known in the names of ‘Benziform’ and Carbon Tet ?....
QA->Which disease is also known as "Christmas Disease"?....
QA->Which chemical compound is also known in the names of "Prussian blue, Parisian Blue & Berlin Blue"?....
MCQ-> Throughout human history the leading causes of death have been infection and trauma, Modem medicine has scored significant victories against both, and the major causes of ill health and death are now the chronic degenerative diseases, such as coronary artery disease, arthritis, osteoporosis, Alzheimer’s, macular degeneration, cataract and cancer. These have a long latency period before symptoms appear and a diagnosis is made. It follows that the majority of apparently healthy people are pre-ill.But are these conditions inevitably degenerative? A truly preventive medicine that focused on the pre-ill, analyzing the metabolic errors which lead to clinical illness, might be able to correct them before the first symptom. Genetic risk factors are known for all the chronic degenerative diseases, and are important to the individuals who possess them. At the population level, however, migration studies confirm that these illnesses are linked for the most part to lifestyle factors — exercise, smoking and nutrition. Nutrition is the easiest of these to change, and the most versatile tool for affecting the metabolic changes needed to tilt the balance away from disease.Many national surveys reveal that malnutrition is common in developed countries. This is not the calorie and/or micronutrient deficiency associated with developing nations (type A malnutrition); but multiple micronutrient depletion, usually combined with calorific balance or excess (Type B malnutrition). The incidence and severity of Type B malnutrition will be shown to be worse if newer micronutrient groups such as the essential fatty acids, xanthophylls and falconoid are included in the surveys. Commonly ingested levels of these micronutrients seem to be far too low in many developed countries.There is now considerable evidence that Type B malnutrition is a major cause of chronic degenerative diseases. If this is the case, then t is logical to treat such diseases not with drugs but with multiple micronutrient repletion, or pharmaco-nutrition’. This can take the form of pills and capsules — ‘nutraceuticals’, or food formats known as ‘functional foods’, This approach has been neglected hitherto because it is relatively unprofitable for drug companies — the products are hard to patent — and it is a strategy which does not sit easily with modem medical interventionism. Over the last 100 years, the drug industry has invested huge sums in developing a range of subtle and powerful drugs to treat the many diseases we are subject to. Medical training is couched in pharmaceutical terms and this approach has provided us with an exceptional range of therapeutic tools in the treatment of disease and in acute medical emergencies. However, the pharmaceutical model has also created an unhealthy dependency culture, in which relatively few of us accept responsibility for maintaining our own health. Instead, we have handed over this responsibility to health professionals who know very little about health maintenance, or disease prevention.One problem for supporters of this argument is lack of the right kind of hard evidence. We have a wealth of epidemiological data linking dietary factors to health profiles/ disease risks, and a great deal of information on mechanism: how food factors interact with our biochemistry. But almost all intervention studies with micronutrients, with the notable exception of the omega 3 fatty acids, have so far produced conflicting or negative results. In other words, our science appears to have no predictive value. Does this invalidate the science? Or are we simply asking the wrong questions?Based on pharmaceutical thinking, most intervention studies have attempted to measure the impact of a single micronutrient on the incidence of disease. The classical approach says that if you give a compound formula to test subjects and obtain positive results, you cannot know which ingredient is exerting the benefit, so you must test each ingredient individually. But in the field of nutrition, this does not work. Each intervention on its own will hardly make enough difference to be measured. The best therapeutic response must therefore combine micronutrients to normalise our internal physiology. So do we need to analyse each individual’s nutritional status and then tailor a formula specifically for him or her? While we do not have the resources to analyze millions of individual cases, there is no need to do so. The vast majority of people are consuming suboptimal amounts of most micronutrients, and most of the micronutrients concerned are very safe. Accordingly, a comprehensive and universal program of micronutrient support is probably the most cost-effective and safest way of improving the general health of the nation.The author recommends micronutrient-repletion for large-scale treatment of chronic degenerative diseases because
 ...
MCQ-> Read the following passage carefully and answer the questions given below it. Certain words/phrases have been given in bold to help you locate them while answering some of the questions: In every religion, culture and civilization feeding the poor and hungry is considered one of the most noble deeds. However such large scale feeding will require huge investment both in resources and time. A better alternative is to create conditions by which proper wholesome food is available to all the rural poor at affordable price. Getting this done will be the biggest charity.Our work with the rural poor in villages of Western Maharashtra has shown that most of these people are landless laborers. After working the whole day in the fields in scorching sun they come home in the evening and have to cook for the whole family. The cooking is done on the most primitive chulha (wood stove) which results in tremendous indoor air pollution. Many of them also have no electricity so they use primitive and polluting kerosene lamps. World Health Organization (WHO) data has shown that about 300,000 deaths/ year in India can be directly attributed to indoor air pollution in such -nuts. At the same time this pollution results in many respiratory ailments and these people spend close Rs. 200-400 per month on medical bills. Besides the pollution, rural poor also eat very poor diet. They eat  whatever is available daily at Public Distribution System (PDS) shops and most of the times these shops are out of rations. Thus they cook whatever is available. The hard work together with poor eating takes a heavy toll on their health. Besides this malnutrition also affects the physical and mental health of their children and may lead to creation of a whole generation of mentally challenged citizens. So I feel that the best way to provide adequate food for rural poor is by setting up rural restaurants on large scale. These restaurants will be similar to regular ones but for people below poverty line (BPL) they will provide meals at subsidized rates. These citizens will pay only Rs. 10 per meal and the rest, which is expected to be quite small, will come as a part of Government subsidy. With existing open market prices of vegetables and groceries average cost of simple meal for a family of four comes to Rs. 50 per meal or Rs. 12.50 per person per meal. If the PDS prices are taken for the groceries then the average cost will be Rs. 7.50 per person per meal. This makes the subsidy approximately Rs. 2.50 per person per meal only and hence quite small. The buying of meals could be by the use of UID (Aadhar) card by rural poor. The total cost should be Rs. 30 per day for three vegetarian meals of breakfast, lunch and dinner. The rural poor will get better nutrition and tasty food by eating  in these restaurants. Besides the time saved can be used for resting and other gainful activities like teaching children. Since the food will not be cooked in huts, this strategy will result in less pollution in rural households. This will be beneficial for their health. Besides, women's chores will be reduced drastically. Another advantage of eating in these restaurants will be increased social interaction of rural poor since this could also become a meeting place. Eating in restaurants will also require fewer utensils in house and hence less expenditure. For other things like hot water for bath, making tea, boiling milk and cooking on holidays some utensils and fuel will be required. Our Institute NARI has developed an extremely efficient and environment-friendly stove which provides simultaneously both light and heat for cooking and hence may provide the necessary functions. Providing reasonably priced wholesome food is the basic aim and program of Government of India (GOI). This is the basis of their much touted food security  program.However in 65years they have not been able to do so. Thus I feel a public private partnership can help in this. To help the restaurant owners the GOI or state Governments should provide them with soft loans and other line of credit for setting up such facilities. Corporate world can take this up as a part of their corporate social responsibility activity. Their participation will help ensure good quality restaurants and services. Besides the charitable work, this will also make good business sense. McDonald's-type restaurant systems for rural areas can be a good model to be set up for quality control both in terms of hygiene and in terms of quality of food material. However focus will be on availability of wholesome simple vegetarian food in these restaurants.More clientele (volumes) will make these restaurants economical. Existing models of dhabas, udipi type restaurants etc. can be used in this scheme. These restaurants may also be able to provide midday meals in rural schools. At present the midday meal program is faltering due to various reasons. Food coupons in western countries provide cheap food for poor. However quite a number of fast food restaurants in US do not accept them. Besides these coupons are most of the times used for non-food items, it will be mandatory for rural restaurants to accept payment via UID cards for BPL citizens. Existing soup kitchens, lagers and temple food are based on charity. For large scale rural use it should be based on good social enterprise  business model. Cooking food in these restaurants will also result in much more efficient use of energy since energy/ kg of food cooked in households is greater than that in restaurants. The main thing however will be to reduce drastically the food wastage In these restaurants. Rural restaurants can also be forced to use clean fuels like LPG or locally produced biomass-based liquid fuels. This strategy is very difficult to enforce for individual households. Large scale employment generation in rural areas may result because of this activity. With an average norm of 30 people employed/ 100-chair restaurant, this program has the potential of generating about 20 million jobs permanently in rural areas. Besides the infrastructure development in setting up restaurants and establishing the food chain etc will help the local farmers and will create huge wealth generation in these areas. In the long run this strategy may provide better food security for rural poor than the existing one which is based on cheap food availability in PDS - a system which is prone to corruption and leakage.In accordance with the view expressed by the writer of this article, what is the biggest charity ?
 ...
MCQ->What will be the output of the program ? #include<stdio.h> int main() { char names[] = { "Suresh", "Siva", "Sona", "Baiju", "Ritu"}; int i; char t; t = names[3]; names[3] = names[4]; names[4] = t; for(i=0; i<=4; i++) printf("%s,", names[i]); return 0; }...
MCQ->Read the following paragraph and answer the question which follows. Fighting the disease reincer is never easy for anyone. However, finding an insurance to be financially prepared for it, definitely is. For the disease requiring a minimum of INR 60 lakh worth medical expenditure, our insurance scheme offers INR 5 lakhs every year for first five years followed by INR 10 lakhs every subsequent yearAn advertisement by an insurance company. Which of the following statements would prove that the insurance policy is flawed in its approach (A) The disease although serious and cash intensive, is total only in 23% of the cases. (B) 75% of the entire amount for treatment is required in the first two of years of contracting the disease. (C) Expenses for treatment of the disease do not fluctuate much based on the intensity of disease and the type of hospitals. (D) If treated within 4 years of contracting the disease, the patient can be completely cured of the disease for life....
MCQ-> The broad scientific understanding today is that our planet is experiencing a warming trend over and above natural and normal variations that is almost certainly due to human activities associated with large-scale manufacturing. The process began in the late 1700s with the Industrial Revolution, when manual labor, horsepower, and water power began to be replaced by or enhanced by machines. This revolution, over time, shifted Britain, Europe, and eventually North America from largely agricultural and trading societies to manufacturing ones, relying on machinery and engines rather than tools and animals.The Industrial Revolution was at heart a revolution in the use of energy and power. Its beginning is usually dated to the advent of the steam engine, which was based on the conversion of chemical energy in wood or coal to thermal energy and then to mechanical work primarily the powering of industrial machinery and steam locomotives. Coal eventually supplanted wood because, pound for pound, coal contains twice as much energy as wood (measured in BTUs, or British thermal units, per pound) and because its use helped to save what was left of the world's temperate forests. Coal was used to produce heat that went directly into industrial processes, including metallurgy, and to warm buildings, as well as to power steam engines. When crude oil came along in the mid- 1800s, still a couple of decades before electricity, it was burned, in the form of kerosene, in lamps to make light replacing whale oil. It was also used to provide heat for buildings and in manufacturing processes, and as a fuel for engines used in industry and propulsion.In short, one can say that the main forms in which humans need and use energy are for light, heat, mechanical work and motive power, and electricity which can be used to provide any of the other three, as well as to do things that none of those three can do, such as electronic communications and information processing. Since the Industrial Revolution, all these energy functions have been powered primarily, but not exclusively, by fossil fuels that emit carbon dioxide (CO2), To put it another way, the Industrial Revolution gave a whole new prominence to what Rochelle Lefkowitz, president of Pro-Media Communications and an energy buff, calls "fuels from hell" - coal, oil, and natural gas. All these fuels from hell come from underground, are exhaustible, and emit CO2 and other pollutants when they are burned for transportation, heating, and industrial use. These fuels are in contrast to what Lefkowitz calls "fuels from heaven" -wind, hydroelectric, tidal, biomass, and solar power. These all come from above ground, are endlessly renewable, and produce no harmful emissions.Meanwhile, industrialization promoted urbanization, and urbanization eventually gave birth to suburbanization. This trend, which was repeated across America, nurtured the development of the American car culture, the building of a national highway system, and a mushrooming of suburbs around American cities, which rewove the fabric of American life. Many other developed and developing countries followed the American model, with all its upsides and downsides. The result is that today we have suburbs and ribbons of highways that run in, out, and around not only America s major cities, but China's, India's, and South America's as well. And as these urban areas attract more people, the sprawl extends in every direction.All the coal, oil, and natural gas inputs for this new economic model seemed relatively cheap, relatively inexhaustible, and relatively harmless-or at least relatively easy to clean up afterward. So there wasn't much to stop the juggernaut of more people and more development and more concrete and more buildings and more cars and more coal, oil, and gas needed to build and power them. Summing it all up, Andy Karsner, the Department of Energy's assistant secretary for energy efficiency and renewable energy, once said to me: "We built a really inefficient environment with the greatest efficiency ever known to man."Beginning in the second half of the twentieth century, a scientific understanding began to emerge that an excessive accumulation of largely invisible pollutants-called greenhouse gases - was affecting the climate. The buildup of these greenhouse gases had been under way since the start of the Industrial Revolution in a place we could not see and in a form we could not touch or smell. These greenhouse gases, primarily carbon dioxide emitted from human industrial, residential, and transportation sources, were not piling up along roadsides or in rivers, in cans or empty bottles, but, rather, above our heads, in the earth's atmosphere. If the earth's atmosphere was like a blanket that helped to regulate the planet's temperature, the CO2 buildup was having the effect of thickening that blanket and making the globe warmer.Those bags of CO2 from our cars float up and stay in the atmosphere, along with bags of CO2 from power plants burning coal, oil, and gas, and bags of CO2 released from the burning and clearing of forests, which releases all the carbon stored in trees, plants, and soil. In fact, many people don't realize that deforestation in places like Indonesia and Brazil is responsible for more CO2 than all the world's cars, trucks, planes, ships, and trains combined - that is, about 20 percent of all global emissions. And when we're not tossing bags of carbon dioxide into the atmosphere, we're throwing up other greenhouse gases, like methane (CH4) released from rice farming, petroleum drilling, coal mining, animal defecation, solid waste landfill sites, and yes, even from cattle belching. Cattle belching? That's right-the striking thing about greenhouse gases is the diversity of sources that emit them. A herd of cattle belching can be worse than a highway full of Hummers. Livestock gas is very high in methane, which, like CO2, is colorless and odorless. And like CO2, methane is one of those greenhouse gases that, once released into the atmosphere, also absorb heat radiating from the earth's surface. "Molecule for molecule, methane's heat-trapping power in the atmosphere is twenty-one times stronger than carbon dioxide, the most abundant greenhouse gas.." reported Science World (January 21, 2002). “With 1.3 billion cows belching almost constantly around the world (100 million in the United States alone), it's no surprise that methane released by livestock is one of the chief global sources of the gas, according to the U.S. Environmental Protection Agency ... 'It's part of their normal digestion process,' says Tom Wirth of the EPA. 'When they chew their cud, they regurgitate [spit up] some food to rechew it, and all this gas comes out.' The average cow expels 600 liters of methane a day, climate researchers report." What is the precise scientific relationship between these expanded greenhouse gas emissions and global warming? Experts at the Pew Center on Climate Change offer a handy summary in their report "Climate Change 101. " Global average temperatures, notes the Pew study, "have experienced natural shifts throughout human history. For example; the climate of the Northern Hemisphere varied from a relatively warm period between the eleventh and fifteenth centuries to a period of cooler temperatures between the seventeenth century and the middle of the nineteenth century. However, scientists studying the rapid rise in global temperatures during the late twentieth century say that natural variability cannot account for what is happening now." The new factor is the human factor-our vastly increased emissions of carbon dioxide and other greenhouse gases from the burning of fossil fuels such as coal and oil as well as from deforestation, large-scale cattle-grazing, agriculture, and industrialization.“Scientists refer to what has been happening in the earth’s atmosphere over the past century as the ‘enhanced greenhouse effect’”, notes the Pew study. By pumping man- made greenhouse gases into the atmosphere, humans are altering the process by which naturally occurring greenhouse gases, because of their unique molecular structure, trap the sun’s heat near the earth’s surface before that heat radiates back into space."The greenhouse effect keeps the earth warm and habitable; without it, the earth's surface would be about 60 degrees Fahrenheit colder on average. Since the average temperature of the earth is about 45 degrees Fahrenheit, the natural greenhouse effect is clearly a good thing. But the enhanced greenhouse effect means even more of the sun's heat is trapped, causing global temperatures to rise. Among the many scientific studies providing clear evidence that an enhanced greenhouse effect is under way was a 2005 report from NASA's Goddard Institute for Space Studies. Using satellites, data from buoys, and computer models to study the earth's oceans, scientists concluded that more energy is being absorbed from the sun than is emitted back to space, throwing the earth's energy out of balance and warming the globe."Which of the following statements is correct? (I) Greenhouse gases are responsible for global warming. They should be eliminated to save the planet (II) CO2 is the most dangerous of the greenhouse gases. Reduction in the release of CO2 would surely bring down the temperature (III) The greenhouse effect could be traced back to the industrial revolution. But the current development and the patterns of life have enhanced their emissions (IV) Deforestation has been one of the biggest factors contributing to the emission of greenhouse gases Choose the correct option:...
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions