1. Scientific Name of Andromeda, Taiwan ?

Answer: Pieris taiwanensis

Reply

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->Scientific Name of Taiwan Andromeda ?....
QA->Scientific Name of Andromeda, Taiwan ?....
QA->Which pair won the WTA China Open women"s doubles tennis title 2015 by defeating Yung-Jan Chan of Taiwan and partner Hao-Ching Chan of Taiwan in the final?....
QA->Scientific Name of Prelude Andromeda ?....
QA->Scientific Name of Andromeda ?....
MCQ-> Analyse the following passage and provide appropriate answers for the follow. Popper claimed, scientific beliefs are universal in character, and have to be so if they are to serve us in explanation and prediction. For the universality of a scientific belief implies that, no matter how many instances we have found positive, there will always be an indefinite number of unexamined instances which may or may not also be positive. We have no good reason for supposing that any of these unexamined instances will be positive, or will be negative, so we must refrain from drawing any conclusions. On the other hand, a single negative instance is sufficient to prove that the belief is false, for such an instance is logically incompatible with the universal truth of the belief. Provided, therefore, that the instance is accepted as negative we must conclude that the scientific belief is false. In short, we can sometimes deduce that a universal scientific belief is false but we can never induce that a universal scientific belief is true. It is sometimes argued that this 'asymmetry' between verification and falsification is not nearly as pronounced as Popper declared it to be. Thus, there is no inconsistency in holding that a universal scientific belief is false despite any number of positive instances; and there is no inconsistency either in holding that a universal scientific belief is true despite the evidence of a negative instance. For the belief that an instance is negative is itself a scientific belief and may be falsified by experimental evidence which we accept and which is inconsistent with it. When, for example, we draw a right-angled triangle on the surface of a sphere using parts of three great circles for its sides, and discover that for this triangle Pythagoras' Theorem does not hold, we may decide that this apparently negative instance is not really negative because it is not a genuine instance at all. Triangles drawn on the surfaces of spheres are not the sort of triangles which fall within the scope of Pythagoras' Theorem. Falsification, that is to say, is no more capable of yielding conclusive rejections of scientific belief than verification is of yielding conclusive acceptances of scientific beliefs. The asymmetry between falsification and verification, therefore, has less logical significance than Popper supposed. We should, though, resist this reasoning. Falsifications may not be conclusive, for the acceptances on which rejections are based are always provisional acceptances. But, nevertheless, it remains the case that, in falsification, if we accept falsifying claims then, to remain consistent, we must reject falsified claims. On the other hand, although verifications are also not conclusive, our acceptance or rejection of verifying instances has no implications concerning the acceptance or rejection of verified claims. Falsifying claims sometimes give us a good reason for rejecting a scientific belief, namely when the claims are accepted. But verifying claims, even when accepted, give us no good and appropriate reason for accepting any scientific belief, because any such reason would have to be inductive to be appropriate and there are no good inductive reasons.According to Popper, the statement "Scientific beliefs are universal in character" implies that...
MCQ-> Our propensity to look out for regularities, and to impose laws upon nature, leads to the psychological phenomenon of dogmatic thinking or, more generally, dogmatic behaviour: we expect regularities everywhere and attempt to find them even where there are none; events which do not yield to these attempts we are inclined to treat as a kind of `background noise’; and we stick to our expectations even when they are inadequate and we ought to accept defeat. This dogmatism is to some extent necessary. It is demanded by a situation which can only be dealt with by forcing our conjectures upon the world. Moreover, this dogmatism allows us to approach a good theory in stages, by way of approximations: if we accept defeat too easily, we may prevent ourselves from finding that we were very nearly right.It is clear that this dogmatic attitude; which makes us stick to our first impressions, is indicative of a strong belief; while a critical attitude, which is ready to modify its tenets, which admits doubt and demands tests, is indicative of a weaker belief. Now according to Hume’s theory, and to the popular theory, the strength of a belief should be a product of repetition; thus it should always grow with experience, and always be greater in less primitive persons. But dogmatic thinking, an uncontrolled wish to impose regularities, a manifest pleasure in rites and in repetition as such, is characteristic of primitives and children; and increasing experience and maturity sometimes create an attitude of caution and criticism rather than of dogmatism.My logical criticism of Hume’s psychological theory, and the considerations connected with it, may seem a little removed from the field of the philosophy of science. But the distinction between dogmatic and critical thinking, or the dogmatic and the critical attitude, brings us right back to our central problem. For the dogmatic attitude is clearly related to the tendency to verify our laws and schemata by seeking to apply them and to confirm them, even to the point of neglecting refutations, whereas the critical attitude is one of readiness to change them - to test them; to refute them; to falsify them, if possible. This suggests that we may identify the critical attitude with the scientific attitude, and the dogmatic attitude with the one which we have described as pseudo-scientific. It further suggests that genetically speaking the pseudo-scientific attitude is more primitive than, and prior to, the scientific attitude: that it is a pre-scientific attitude. And this primitivity or priority also has its logical aspect. For the critical attitude is not so much opposed to the dogmatic attitude as super-imposed upon it: criticism must be directed against existing and influential beliefs in need of critical revision – in other words, dogmatic beliefs. A critical attitude needs for its raw material, as it were, theories or beliefs which are held more or less dogmatically.Thus, science must begin with myths, and with the criticism of myths; neither with the collection of observations, nor with the invention of experiments, but with the critical discussion of myths, and of magical techniques and practices. The scientific tradition is distinguished from the pre-scientific tradition in having two layers. Like the latter, it passes on its theories; but it also passes on a critical attitude towards them. The theories are passed on, not as dogmas, but rather with the challenge to discuss them and improve upon them.The critical attitude, the tradition of free discussion of theories with the aim of discovering their weak spots so that they may be improved upon, is the attitude of reasonableness, of rationality. From the point of view here developed, all laws, all theories, remain essentially tentative, or conjectural, or hypothetical, even when we feel unable to doubt them any longer. Before a theory has been refuted we can never know in what way it may have to be modified.In the context of science, according to the passage, the interaction of dogmatic beliefs and critical attitude can be best described as:
 ...
MCQ-> India is rushing headlong toward economic success and modernisation, counting on high- tech industries such as information technology and biotechnology to propel the nation toprosperity. India’s recent announcement that it would no longer produce unlicensed inexpensive generic pharmaceuticals bowed to the realities of the World TradeOrganisation while at the same time challenging the domestic drug industry to compete with the multinational firms. Unfortunately, its weak higher education sector constitutes the Achilles’ Heel of this strategy. Its systematic disinvestment in higher education inrecent years has yielded neither world-class research nor very many highly trained scholars, scientists, or managers to sustain high-tech development. India’s main competitors especially China but also Singapore, Taiwan, and South Korea — are investing in large and differentiated higher education systems. They are providingaccess to large number of students at the bottom of the academic system while at the same time building some research-based universities that are able to compete with theworld’s best institutions. The recent London Times Higher Education Supplement ranking of the world’s top 200 universities included three in China, three in Hong Kong,three in South Korea, one in Taiwan, and one in India (an Indian Institute of Technology at number 41.— the specific campus was not specified). These countries are positioningthemselves for leadership in the knowledge-based economies of the coming era. There was a time when countries could achieve economic success with cheap labour andlow-tech manufacturing. Low wages still help, but contemporary large-scale development requires a sophisticated and at least partly knowledge-based economy.India has chosen that path, but will find a major stumbling block in its university system. India has significant advantages in the 21st century knowledge race. It has a large high ereducation sector — the third largest in the world in student numbers, after China andthe United States. It uses English as a primary language of higher education and research. It has a long academic tradition. Academic freedom is respected. There are asmall number of high quality institutions, departments, and centres that can form the basis of quality sector in higher education. The fact that the States, rather than the Central Government, exercise major responsibility for higher education creates a rather cumbersome structure, but the system allows for a variety of policies and approaches. Yet the weaknesses far outweigh the strengths. India educates approximately 10 per cent of its young people in higher education compared with more than half in the major industrialised countries and 15 per cent in China. Almost all of the world’s academic systems resemble a pyramid, with a small high quality tier at the top and a massive sector at the bottom. India has a tiny top tier. None of its universities occupies a solid position at the top. A few of the best universities have some excellent departments and centres, and there is a small number of outstanding undergraduate colleges. The University Grants Commission’s recent major support of five universities to build on their recognised strength is a step toward recognising a differentiated academic system and fostering excellence. At present, the world-class institutions are mainly limited to the Indian Institutes of Technology (IITs), the Indian Institutes of Management (IIMs) and perhaps a few others such as the All India Institute of Medical Sciences and the Tata Institute of Fundamental Research. These institutions, combined, enroll well under 1 percent of the student population. India’s colleges and universities, with just a few exceptions, have become large, under-funded, ungovernable institutions. At many of them, politics has intruded into campus life, influencing academic appointments and decisions across levels. Under-investment in libraries, information technology, laboratories, and classrooms makes it very difficult to provide top-quality instruction or engage in cutting-edge research.The rise in the number of part-time teachers and the freeze on new full-time appointments in many places have affected morale in the academic profession. The lackof accountability means that teaching and research performance is seldom measured. The system provides few incentives to perform. Bureaucratic inertia hampers change.Student unrest and occasional faculty agitation disrupt operations. Nevertheless, with a semblance of normality, faculty administrators are. able to provide teaching, coordinate examinations, and award degrees. Even the small top tier of higher education faces serious problems. Many IIT graduates,well trained in technology, have chosen not to contribute their skills to the burgeoning technology sector in India. Perhaps half leave the country immediately upon graduation to pursue advanced study abroad — and most do not return. A stunning 86 per cent of students in science and technology fields from India who obtain degrees in the United States do not return home immediately following their study. Another significant group, of about 30 per cent, decides to earn MBAs in India because local salaries are higher.—and are lost to science and technology.A corps of dedicated and able teachers work at the IlTs and IIMs, but the lure of jobs abroad and in the private sector make it increasingly difficult to lure the best and brightest to the academic profession.Few in India are thinking creatively about higher education. There is no field of higher education research. Those in government as well as academic leaders seem content to do the “same old thing.” Academic institutions and systems have become large and complex. They need good data, careful analysis, and creative ideas. In China, more than two-dozen higher education research centers, and several government agencies are involved in higher education policy.India has survived with an increasingly mediocre higher education system for decades.Now as India strives to compete in a globalized economy in areas that require highly trained professionals, the quality of higher education becomes increasingly important.India cannot build internationally recognized research-oriented universities overnight,but the country has the key elements in place to begin and sustain the process. India will need to create a dozen or more universities that can compete internationally to fully participate in the new world economy. Without these universities, India is destined to remain a scientific backwater.Which of the following ‘statement(s) is/are correct in the context of the given passage ? I. India has the third largest higher education sector in the world in student numbers. II. India is moving rapidly toward economic success and modernisation through high tech industries such as information technology and bitechonology to make the nation to prosperity. III. India’s systematic disinvestment in higher education in recent years has yielded world class research and many world class trained scholars, scientists to sustain high-tech development....
MCQ->Choose the set in which the statements are most logically related. A. All men are men of scientific ability. B. Some women are women of scientific ability. C. Some men are men of artistic genius. D. Some men and women are of scientific ability. E. All men of artistic genius are men of scientific ability. F. Some women of artistic genius are women of scientific ability....
MCQ-> Read the following passage carefully and answer the question given below it Certain words/phrases have been printed in bold to help you locate them while answering some of the question.India is rushing headlong towards economic success and modernisation counting on high-tech industries such as information technology and biotechnology to propel the nation to prosperity India’s recent announcement that it would no longer produce unlicensed inexpensive generic pharmaceuticals bowed to the realities of the world Trade Organisation while at the same time challenging the domestic drug industry to compete with the multinational firms. Unfortunately its weak higher education sector constitutes the Achilles’ heel of this strategy. Its systematic disinvestment in higher education in recent years has yielded neither world-class research nor very many highly trained scholars scientists or managers to sustain high-tech development.India’s main competitors-especially China but also Singapore Taiwan and South Korea are investing in large and differentiated higher education systems. They are providing access to a large number of students at the bottom of the academic system while at the same time building some research-based universities that are able to compete with the world’s best institutions. The recent London Times Higher Education Supplement ranking of the world’s top 200 universities included three in China three in Hong Kong three in South Korea One in Taiwan and one in India. These countries are positioning themselves for leadership in the knowledge-based economies of the coming era. There was a time when countries could achieve economic success with cheap labour and low-tech manufacturing, Low wages still help but contemporary large scale development requires a sophisticated and at least partly knowledge-based economy India has chosen that path but will find a major stumbling block in its university system India has significant advantages in the 21st century knowledge race.It has a large higher education sector the third largest in the world in terms of numbers of students after China and the united states It uses english as a primary language of higher education and research It has long acdemic tradition Academic freedom is respected There are a small number of high-quality institutions departments, and centres that can from the basic sector in higher education The fact that the states rather than the central Government exerise major responsibility for higher education creates a rather “cumbersome” but the system allows for a variety of policies and approaches Yet the weaknesses far outweigh the strengths India educates approximately 10 per cent of its young people in higher education compared to more than half in the major industrialised countries and 15 per cent in China Almost all of the world’s academic system “resemble” a pyramid, with a smaller high-quality tier at the top tier.None of its universities occupies a solid position at the top A few of the best unversities have some excellence The University Grants Commission’s recent major support to five universities to build on their recognised strength is a step towards recognising a differentiated academic system and “fostering” excellence These universities combined enro; well under one percent of the student population.Which of the following is TRUE in the context of the passage ?
 ...
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions