1. Belief not based on reason or knowledge

Answer: superstition

Reply

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->Belief not based on reason or knowledge.....
QA->Belief not based on reason or knowledge....
QA->In a rule-based system, procedural domain knowledge is in the form of :....
QA->Jeddah-based NRI businessman and Managing Director of Shifa Al Jazeera Medical Group who has been named the 2015 Person of the Year by the London-based Asian Lite newspaper?....
QA->Ayyavazhi is a dharmic belief system centered on the life and preachings of ..........?....
MCQ-> Analyse the following passage and provide appropriate answers for the follow. Popper claimed, scientific beliefs are universal in character, and have to be so if they are to serve us in explanation and prediction. For the universality of a scientific belief implies that, no matter how many instances we have found positive, there will always be an indefinite number of unexamined instances which may or may not also be positive. We have no good reason for supposing that any of these unexamined instances will be positive, or will be negative, so we must refrain from drawing any conclusions. On the other hand, a single negative instance is sufficient to prove that the belief is false, for such an instance is logically incompatible with the universal truth of the belief. Provided, therefore, that the instance is accepted as negative we must conclude that the scientific belief is false. In short, we can sometimes deduce that a universal scientific belief is false but we can never induce that a universal scientific belief is true. It is sometimes argued that this 'asymmetry' between verification and falsification is not nearly as pronounced as Popper declared it to be. Thus, there is no inconsistency in holding that a universal scientific belief is false despite any number of positive instances; and there is no inconsistency either in holding that a universal scientific belief is true despite the evidence of a negative instance. For the belief that an instance is negative is itself a scientific belief and may be falsified by experimental evidence which we accept and which is inconsistent with it. When, for example, we draw a right-angled triangle on the surface of a sphere using parts of three great circles for its sides, and discover that for this triangle Pythagoras' Theorem does not hold, we may decide that this apparently negative instance is not really negative because it is not a genuine instance at all. Triangles drawn on the surfaces of spheres are not the sort of triangles which fall within the scope of Pythagoras' Theorem. Falsification, that is to say, is no more capable of yielding conclusive rejections of scientific belief than verification is of yielding conclusive acceptances of scientific beliefs. The asymmetry between falsification and verification, therefore, has less logical significance than Popper supposed. We should, though, resist this reasoning. Falsifications may not be conclusive, for the acceptances on which rejections are based are always provisional acceptances. But, nevertheless, it remains the case that, in falsification, if we accept falsifying claims then, to remain consistent, we must reject falsified claims. On the other hand, although verifications are also not conclusive, our acceptance or rejection of verifying instances has no implications concerning the acceptance or rejection of verified claims. Falsifying claims sometimes give us a good reason for rejecting a scientific belief, namely when the claims are accepted. But verifying claims, even when accepted, give us no good and appropriate reason for accepting any scientific belief, because any such reason would have to be inductive to be appropriate and there are no good inductive reasons.According to Popper, the statement "Scientific beliefs are universal in character" implies that...
MCQ-> Please read the passage below and answer the questions that follow:Rene Descartes’ assertion that ideas may be held true with certainty if they are “clear and distinct” provides the context for Peirce’s title, “How to Make Our Ideas Clear.” Peirce argued that an idea may seem clear if it is familiar. Distinctness depends on having good definitions, and while definitions are desirable they do not yield any new knowledge or certainty of the truth of empirical propositions. Peirce argues that thought needs more than a sense of clarity; it also needs a method for making ideas clear. Once we have made an idea clear, then we can begin the task of determining its truth. The method that Peirce offers came to be known as the pragmatic method and the epistemology on which it depends is pragmatism. Peirce rejected Descartes’ method of doubt. We cannot doubt something, for the sake of method, that we do not doubt in fact. In a later essay, he would state as his rule “Dismiss make-believes.” This refers to Descartes’ method of doubting things, in the safety of his study, such things as the existence of the material world, which he did not doubt when he went out on the street. Peirce proposed that a philosophical investigation can begin from only one state of mind, namely, the state of mind in which we find ourselves when we begin. If any of us examines our state of mind, we find two kinds of thoughts: beliefs and doubts. Peirce had presented the interaction of doubt and belief in an earlier essay “The Fixation of Belief”.Beliefs and doubts are distinct. Beliefs consist of states of mind in which we would make a statement; doubts are states in which we would ask a question. We experience a doubt as a sense of uneasiness and hesitation. Doubt serves as an irritant that causes us to appease it by answering a question and thereby fixing a belief and putting the mind to rest on that issue. A common example of a doubt would be arriving in an unfamiliar city and not being sure of the location of our destination address in relation to our present location. We overcome this doubt and fix a belief by getting the directions. Once we achieve a belief, we can take the necessary action to reach our destination. Peirce defines a belief subjectively as something of which we are aware and which appeases the doubt. Objectively, a belief is a rule of action. The whole purpose of thought consists in overcoming a doubt and attaining a belief. Peirce acknowledges that some people like to think about things or argue about them without caring to find a true belief, but he asserts that such dilettantism does not constitute thought. The beliefs that we hold determine how we will act. If we believe, rightly or wrongly, that the building that we are trying to reach sits one block to our north, we will walk in that direction. We have beliefs about matters of fact, near and far. For example, we believe in the real objects in front of us and we believe generally accepted historical statements. We also believe in relations of ideas such as that seven and five equal twelve. In addition to these we have many beliefs about science, politics, economics, religion and so on. Some of our beliefs may be false since we are capable of error. To believe something means to think that it is true.According to Peirce, for a particular thought, which of the following statements will be correct?
 ...
MCQ-> A difficult readjustment in the scientist's conception of duty is imperatively necessary. As Lord Adrain said in his address to the British Association, unless we are ready to give up some of our old loyalties, we may be forced into a fight which might end the human race. This matter of loyalty is the crux. Hitherto, in the East and in the West alike, most scientists, like most other people, have felt that loyalty to their own state is paramount. They have no longer a right to feel this. Loyalty to the human race must take its place. Everyone in the West will at once admit this as regards Soviet scientists. We are shocked that Kapitza who was Rutherford's favourite pupil, was willing when the Soviet government refused him permission to return to Cambridge, to place his scientific skill at the disposal of those who wished to spread communism by means of H-bombs. We do not so readily apprehend a similar failure of duty on our own side. I do not wish to be thought to suggest treachery, since that is only a transference of loyalty to another national state. I am suggesting a very different thing; that scientists the world over should join in enlightening mankind as to the perils of a great war and in devising methods for its prevention. I urge with all the emphasis at my disposal that this is the duty of scientists in East and West alike. It is a difficult duty, and one likely to entail penalties for those who perform it. But, after all, it is the labours of scientists which have caused the danger and on this account, if on no other, scientists must do everything in their power to save mankind from the madness which they have made possible. Science from the dawn of History, and probably longer, has been intimately associated with war. I imagine that when our ancestors descended from the trees they were victorious over the arboreal conservatives because flints were sharper than coconuts. To come to more recent times, Archimedes was respected for his scientific defense of Syracuse against the Romans; Leonardo obtained employment under the Duke of Milan because of his skill in fortification, though he did mention in a postscript that he could also paint a bit. Galileo similarly derived an income from the Grant Duke of Tuscany because of his skill in calculating the trajectories of projectiles. In the French Revolution, those scientists who were not guillotined devoted themselves to making new explosives. There is therefore no departure from tradition in the present day scientists manufacture of A-bombs and H-bomb. All that is new is the extent of their destructive skill.I do not think that men of science can cease to regard the disinterested pursuit of knowledge as their primary duty. It is true that new knowledge and new skills are sometimes harmful in their effects, but scientists cannot profitably take account of this fact since the effects are impossible to foresee. We cannot blame Columbus because the discovery of the Western Hemisphere spread throughout the Eastern Hemisphere an appallingly devastating plague. Nor can we blame James Watt for the Dust Bowl although if there had been no steam engines and no railways the West would not have been so carelessly or so quickly cultivated To see that knowledge is wisely used in primarily the duty of statesmen, not of science; but it is part of the duty of men of science to see that important knowledge is widely disseminated and is not falsified in the interests of this or that propaganda.Scientific knowledge has its dangers; but so has every great thing. And over and beyond the dangers with which it threatens the present, it opens up, as nothing else can, the vision of a possible happy world, a world without poverty, without war, with little illness. And what is perhaps more than all, when science has mastered the forces which mould human character, it will be able to produce populations in which few suffer from destructive fierceness and in which the great majority regard other people, not as competitors, to be feared, but as helpers in a common task. Science has only recently begun to apply itself to human beings except in their purely physical aspect. Such science as exists in psychology and anthropology has hardly begun to affect political behaviour or private ethics. The minds of men remain attuned to a world that is fast disappearing. The changes in our physical environment require, if they are to bring well being, correlative changes in our beliefs and habits. If we cannot effect these changes, we shall suffer the fate of the dinosaurs, who could not live on dry land.I think it is the duty of science. I do not say of every individual man of science, to study the means by which we can adapt ourselves to the new world. There are certain things that the world quite obviously needs; tentativeness, as opposed to dogmatism in our beliefs: an expectation of co-operation, rather than competition, in social relations, a lessening of envy and collective hatred These are things which education could produce without much difficulty. They are not things adequately sought in the education of the present day.It is progress in the human sciences that we must look to undo the evils which have resulted from a knowledge of the physical world hastily and superficially acquired by populations unconscious of the changes in themselves that the new knowledge has made imperative. The road to a happier world than any known in the past lies open before us if atavistic destructive passion can be kept in leash while the necessary adaptations are made. Fears are inevitable in our time, but hopes are equally rational and far more likely to bear good fruit. We must learn to think rather less of the dangers to be avoided than of the good that will be within our grasp if we believe in it and let it dominate our thoughts. Science, whatever unpleasant consequences it may have by the way, is in its very nature a liberator, a liberator of bondage to physical nature and, in time to come a liberator from the weight of destructive passion. We are on the threshold of utter disaster or unprecedented glorious achievement. No previous age has been fraught with problems so momentous and it is to science that we must look for happy issue.The duty of science, according to the author is :-
 ...
MCQ-> The current debate on intellectual property rights (IPRs) raises a number of important issues concerning the strategy and policies for building a more dynamic national agricultural research system, the relative roles of public and private sectors, and the role of agribusiness multinational corporations (MNCs). This debate has been stimulated by the international agreement on Trade Related Intellectual Property Rights (TRIPs), negotiated as part of the Uruguay Round. TRIPs, for the first time, seeks to bring innovations in agricultural technology under a new worldwide IPR regime. The agribusiness MNCs (along with pharmaceutical companies) played a leading part in lobbying for such a regime during the Uruguay Round negotiations. The argument was that incentives are necessary to stimulate innovations, and that this calls for a system of patents which gives innovators the sole right to use (or sell/lease the right to use) their innovations for a specified period and protects them against unauthorised copying or use. With strong support of their national governments, they were influential in shaping the agreement on TRIPs, which eventually emerged from the Uruguay Round. The current debate on TRIPs in India - as indeed elsewhere - echoes wider concerns about ‘privatisation’ of research and allowing a free field for MNCs in the sphere of biotechnology and agriculture. The agribusiness corporations, and those with unbounded faith in the power of science to overcome all likely problems, point to the vast potential that new technology holds for solving the problems of hunger, malnutrition and poverty in the world. The exploitation of this potential should be encouraged and this is best done by the private sector for which patents are essential. Some, who do not necessarily accept this optimism, argue that fears of MNC domination are exaggerated and that farmers will accept their products only if they decisively outperform the available alternatives. Those who argue against agreeing to introduce an IPR regime in agriculture and encouraging private sector research are apprehensive that this will work to the disadvantage of farmers by making them more and more dependent on monopolistic MNCs. A different, though related apprehension is that extensive use of hybrids and genetically engineered new varieties might increase the vulnerability of agriculture to outbreaks of pests and diseases. The larger, longer-term consequences of reduced biodiversity that may follow from the use of specially bred varieties are also another cause for concern. Moreover, corporations, driven by the profit motive, will necessarily tend to underplay, if not ignore, potential adverse consequences, especially those which are unknown and which may manifest themselves only over a relatively long period. On the other hand, high-pressure advertising and aggressive sales campaigns by private companies can seduce farmers into accepting varieties without being aware of potential adverse effects and the possibility of disastrous consequences for their livelihood if these varieties happen to fail. There is no provision under the laws, as they now exist, for compensating users against such eventualities. Excessive preoccupation with seeds and seed material has obscured other important issues involved in reviewing the research policy. We need to remind ourselves that improved varieties by themselves are not sufficient for sustained growth of yields. in our own experience, some of the early high yielding varieties (HYVs) of rice and wheat were found susceptible to widespread pest attacks; and some had problems of grain quality. Further research was necessary to solve these problems. This largely successful research was almost entirely done in public research institutions. Of course, it could in principle have been done by private companies, but whether they choose to do so depends crucially on the extent of the loss in market for their original introductions on account of the above factors and whether the companies are financially strong enough to absorb the ‘losses’, invest in research to correct the deficiencies and recover the lost market. Public research, which is not driven by profit, is better placed to take corrective action. Research for improving common pool resource management, maintaining ecological health and ensuring sustainability is both critical and also demanding in terms of technological challenge and resource requirements. As such research is crucial to the impact of new varieties, chemicals and equipment in the farmer’s field, private companies should be interested in such research. But their primary interest is in the sale of seed materials, chemicals, equipment and other inputs produced by them. Knowledge and techniques for resource management are not ‘marketable’ in the same way as those inputs. Their application to land, water and forests has a long gestation and their efficacy depends on resolving difficult problems such as designing institutions for proper and equitable management of common pool resources. Public or quasi-public research institutions informed by broader, long-term concerns can only do such work. The public sector must therefore continue to play a major role in the national research system. It is both wrong and misleading to pose the problem in terms of public sector versus private sector or of privatisation of research. We need to address problems likely to arise on account of the public-private sector complementarity, and ensure that the public research system performs efficiently. Complementarity between various elements of research raises several issues in implementing an IPR regime. Private companies do not produce new varieties and inputs entirely as a result of their own research. Almost all technological improvement is based on knowledge and experience accumulated from the past, and the results of basic and applied research in public and quasi-public institutions (universities, research organisations). Moreover, as is increasingly recognised, accumulated stock of knowledge does not reside only in the scientific community and its academic publications, but is also widely diffused in traditions and folk knowledge of local communities all over. The deciphering of the structure and functioning of DNA forms the basis of much of modern biotechnology. But this fundamental breakthrough is a ‘public good’ freely accessible in the public domain and usable free of any charge. Various techniques developed using that knowledge can however be, and are, patented for private profit. Similarly, private corporations draw extensively, and without any charge, on germplasm available in varieties of plants species (neem and turmeric are by now famous examples). Publicly funded gene banks as well as new varieties bred by public sector research stations can also be used freely by private enterprises for developing their own varieties and seek patent protection for them. Should private breeders be allowed free use of basic scientific discoveries? Should the repositories of traditional knowledge and germplasm be collected which are maintained and improved by publicly funded organisations? Or should users be made to pay for such use? If they are to pay, what should be the basis of compensation? Should the compensation be for individuals or (or communities/institutions to which they belong? Should individual institutions be given the right of patenting their innovations? These are some of the important issues that deserve more attention than they now get and need serious detailed study to evolve reasonably satisfactory, fair and workable solutions. Finally, the tendency to equate the public sector with the government is wrong. The public space is much wider than government departments and includes co- operatives, universities, public trusts and a variety of non-governmental organisations (NGOs). Giving greater autonomy to research organisations from government control and giving non- government public institutions the space and resources to play a larger, more effective role in research, is therefore an issue of direct relevance in restructuring the public research system.Which one of the following statements describes an important issue, or important issues, not being raised in the context of the current debate on IPRs?
 ...
MCQ-> Answer questions on the basis of information given in the following case. MBA entrance examination comprises two types of problems: formula - based problems and application - based problem. From the analysis of past data, Interesting School of Management (ISM) observes that students good at solving application - based problems are entrepreneurial in nature. Coaching institutes for MBA entrance exams train them to spot formula - based problems and answer them correctly, so as to obtain the required overall cut - off percentile. Thus students, in general, shy away from application - based problem and even those with entrepreneurial mind - set target formula - based problems. Half of a mark is deducted for every wrong answer.ISM wants more students with entrepreneurial mind - set in the next batch. To achieve this, ISM is considering following proposals: I. Preparing a question paper of two parts, Parts A and Part B of duration of one hour each. Part A and Part B would consist of formula - based problems and application - based problems, respectively. After taking away Part A, Part B would be distributed. The qualifying cut - off percentile would be calculated on the combined scores of two parts. II. Preparing a question paper comprising Part A and Part B. While Part A would comprise formula - based problems, Part B would comprise application - based problems, each having a separate qualifying cut - off percentile. III. Assigning one mark for formula - based problems and two marks for application based problems as an incentive for attempting application - based problems. IV. Allotting one mark for formula - based problems and three marks for application - based problem, without mentioning this is the question paper. Which of the following proposal (or combination of proposals) is likely to identify students with best entrepreneurial mind - set?...
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions