1. One who breaks the established traditions and image

Answer: Iconoclast

Reply

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->One who breaks the established traditions and image....
QA->How many image will be formed if two mirrors are fitted adjacent walls and one mirror on ceiling?....
QA->Hackers who breaks security of a system for non malicious reasons like testing their own system are called _____?....
QA->Hackers who breaks security of a system for malicious intend are called _____?....
QA->Which footballer breaks Gerd Muller"s record for most number of goals in a calendar year?....
MCQ-> The persistent patterns in the way nations fight reflect their cultural and historical traditions and deeply rooted attitudes that collectively make up their strategic culture. These patterns provide insights that go beyond what can be learnt just by comparing armaments and divisions. In the Vietnam War, the strategic tradition of the United States called for forcing the enemy to fight a massed battle in an open area, where superior American weapons would prevail. The United States was trying to re-fight World War II in the jungles of Southeast Asia, against an enemy with no intention of doing so. Some British military historians describe the Asian way of war as one of indirect attacks, avoiding frontal attacks meant to overpower an opponent. This traces back to Asian history and geography: the great distances and harsh terrain have often made it difficult to execute the sort of open-field clashes allowed by the flat terrain and relatively compact size of Europe. A very different strategic tradition arose in Asia. The bow and arrow were metaphors for an Eastern way of war. By its nature, the arrow is an indirect weapon. Fired from a distance of hundreds of yards, it does not necessitate immediate physical contact with the enemy. Thus, it can be fired from hidden positions. When fired from behind a ridge, the barrage seems to come out of nowhere, taking the enemy by surprise. The tradition of this kind of fighting is captured in the classical strategic writings of the East. The 2,000 years' worth of Chinese writings on war constitutes the most subtle writings on the subject in any language. Not until Clausewitz, did the West produce a strategic theorist to match the sophistication of Sun-tzu, whose Art of War was written 2,300 years earlier. In Sun-tzu and other Chinese writings, the highest achievement of arms is to defeat an adversary without fighting. He wrote: "To win one hundred victories in one hundred battles is not the acme of skill. To subdue the enemy without fighting is the supreme excellence." Actual combat is just one among many means towards the goal of subduing an adversary. War contains too many surprises to be a first resort. It can lead to ruinous losses, as has been seen time and again. It can have the unwanted effect of inspiring heroic efforts in an enemy, as the United States learned in Vietnam, and as the Japanese found out after Pearl Harbor. Aware of the uncertainties of a military campaign, Sun-tzu advocated war only after the most thorough preparations. Even then it should be quick and clean. Ideally, the army is just an instrument to deal the final blow to an enemy already weakened by isolation, poor morale, and disunity. Ever since Sun-tzu, the Chinese have been seen as masters of subtlety who take measured actions to manipulate an adversary without his knowledge. The dividing line between war and peace can be obscure. Low-level violence often is the backdrop to a larger strategic campaign. The unwitting victim, focused on the day-to-day events, never realizes what's happening to him until it's too late. History holds many examples. The Viet Cong lured French and U.S. infantry deep into the jungle, weakening their morale over several years. The mobile army of the United States was designed to fight on the plains of Europe, where it could quickly move unhindered from one spot to the next. The jungle did more than make quick movement impossible; broken down into smaller units and scattered in isolated bases, US forces were deprived of the feeling of support and protection that ordinarily comes from being part of a big army. The isolation of U.S. troops in Vietnam was not just a logistical detail, something that could be overcome by, for instance, bringing in reinforcements by helicopter. In a big army reinforcements are readily available. It was Napoleon who realized the extraordinary effects on morale that come from being part of a larger formation. Just the knowledge of it lowers the soldier's fear and increases his aggressiveness. In the jungle and on isolated bases, this feeling was removed. The thick vegetation slowed down the reinforcements and made it difficult to find stranded units. Soldiers felt they were on their own. More important, by altering the way the war was fought, the Viet Cong stripped the United States of its belief in the inevitability of victory, as it had done to the French before them. Morale was high when these armies first went to Vietnam. Only after many years of debilitating and demoralizing fighting did Hanoi launch its decisive attacks, at Dienbienphu in 1954 and against Saigon in 1975. It should be recalled that in the final push to victory the North Vietnamese abandoned their jungle guerrilla tactics completely, committing their entire army of twenty divisions to pushing the South Vietnamese into collapse. This final battle, with the enemy's army all in one place, was the one that the United States had desperately wanted to fight in 1965. When it did come out into the open in 1975, Washington had already withdrawn its forces and there was no possibility of re-intervention. The Japanese early in World War II used a modern form of the indirect attack, one that relied on stealth and surprise for its effect. At Pearl Harbor, in the Philippines, and in Southeast Asia, stealth and surprise were attained by sailing under radio silence so that the navy's movements could not be tracked. Moving troops aboard ships into Southeast Asia made it appear that the Japanese army was also "invisible." Attacks against Hawaii and Singapore seemed, to the American and British defenders, to come from nowhere. In Indonesia and the Philippines the Japanese attack was even faster than the German blitz against France in the West. The greatest military surprises in American history have all been in Asia. Surely there is something going on here beyond the purely technical difficulties of detecting enemy movements. Pearl Harbor, the Chinese intervention in Korea, and the Tet offensive in Vietnam all came out of a tradition of surprise and stealth. U.S. technical intelligence – the location of enemy units and their movements was greatly improved after each surprise, but with no noticeable improvement in the American ability to foresee or prepare what would happen next. There is a cultural divide here, not just a technical one. Even when it was possible to track an army with intelligence satellites, as when Iraq invaded Kuwait or when Syria and Egypt attacked Israel, surprise was achieved. The United States was stunned by Iraq's attack on Kuwait even though it had satellite pictures of Iraqi troops massing at the border. The exception that proves the point that cultural differences obscure the West's understanding of Asian behavior was the Soviet Union's 1979 invasion of Afghanistan. This was fully anticipated and understood in advance. There was no surprise because the United States understood Moscow's worldview and thinking. It could anticipate Soviet action almost as well as the Soviets themselves, because the Soviet Union was really a Western country. The difference between the Eastern and the Western way of war is striking. The West's great strategic writer, Clausewitz, linked war to politics, as did Sun-tzu. Both were opponents of militarism, of turning war over to the generals. But there all similarity ends. Clausewitz wrote that the way to achieve a larger political purpose is through destruction of the enemy's army. After observing Napoleon conquer Europe by smashing enemy armies to bits, Clausewitz made his famous remark in On War (1932) that combat is the continuation of politics by violent means. Morale and unity are important, but they should be harnessed for the ultimate battle. If the Eastern way of war is embodied by the stealthy archer, the metaphorical Western counterpart is the swordsman charging forward, seeking a decisive showdown, eager to administer the blow that will obliterate the enemy once and for all. In this view, war proceeds along a fixed course and occupies a finite extent of time, like a play in three acts with a beginning, a middle, and an end. The end, the final scene, decides the issue for good. When things don't work out quite this way, the Western military mind feels tremendous frustration. Sun-tzu's great disciples, Mao Zedong and Ho Chi Minh, are respected in Asia for their clever use of indirection and deception to achieve an advantage over stronger adversaries. But in the West their approach is seen as underhanded and devious. To the American strategic mind, the Viet Cong guerrilla did not fight fairly. He should have come out into the open and fought like a man, instead of hiding in the jungle and sneaking around like a cat in the night. According to the author, the main reason for the U.S. losing the Vietnam war was
 ...
MCQ-> The current debate on intellectual property rights (IPRs) raises a number of important issues concerning the strategy and policies for building a more dynamic national agricultural research system, the relative roles of public and private sectors, and the role of agribusiness multinational corporations (MNCs). This debate has been stimulated by the international agreement on Trade Related Intellectual Property Rights (TRIPs), negotiated as part of the Uruguay Round. TRIPs, for the first time, seeks to bring innovations in agricultural technology under a new worldwide IPR regime. The agribusiness MNCs (along with pharmaceutical companies) played a leading part in lobbying for such a regime during the Uruguay Round negotiations. The argument was that incentives are necessary to stimulate innovations, and that this calls for a system of patents which gives innovators the sole right to use (or sell/lease the right to use) their innovations for a specified period and protects them against unauthorised copying or use. With strong support of their national governments, they were influential in shaping the agreement on TRIPs, which eventually emerged from the Uruguay Round. The current debate on TRIPs in India - as indeed elsewhere - echoes wider concerns about ‘privatisation’ of research and allowing a free field for MNCs in the sphere of biotechnology and agriculture. The agribusiness corporations, and those with unbounded faith in the power of science to overcome all likely problems, point to the vast potential that new technology holds for solving the problems of hunger, malnutrition and poverty in the world. The exploitation of this potential should be encouraged and this is best done by the private sector for which patents are essential. Some, who do not necessarily accept this optimism, argue that fears of MNC domination are exaggerated and that farmers will accept their products only if they decisively outperform the available alternatives. Those who argue against agreeing to introduce an IPR regime in agriculture and encouraging private sector research are apprehensive that this will work to the disadvantage of farmers by making them more and more dependent on monopolistic MNCs. A different, though related apprehension is that extensive use of hybrids and genetically engineered new varieties might increase the vulnerability of agriculture to outbreaks of pests and diseases. The larger, longer-term consequences of reduced biodiversity that may follow from the use of specially bred varieties are also another cause for concern. Moreover, corporations, driven by the profit motive, will necessarily tend to underplay, if not ignore, potential adverse consequences, especially those which are unknown and which may manifest themselves only over a relatively long period. On the other hand, high-pressure advertising and aggressive sales campaigns by private companies can seduce farmers into accepting varieties without being aware of potential adverse effects and the possibility of disastrous consequences for their livelihood if these varieties happen to fail. There is no provision under the laws, as they now exist, for compensating users against such eventualities. Excessive preoccupation with seeds and seed material has obscured other important issues involved in reviewing the research policy. We need to remind ourselves that improved varieties by themselves are not sufficient for sustained growth of yields. in our own experience, some of the early high yielding varieties (HYVs) of rice and wheat were found susceptible to widespread pest attacks; and some had problems of grain quality. Further research was necessary to solve these problems. This largely successful research was almost entirely done in public research institutions. Of course, it could in principle have been done by private companies, but whether they choose to do so depends crucially on the extent of the loss in market for their original introductions on account of the above factors and whether the companies are financially strong enough to absorb the ‘losses’, invest in research to correct the deficiencies and recover the lost market. Public research, which is not driven by profit, is better placed to take corrective action. Research for improving common pool resource management, maintaining ecological health and ensuring sustainability is both critical and also demanding in terms of technological challenge and resource requirements. As such research is crucial to the impact of new varieties, chemicals and equipment in the farmer’s field, private companies should be interested in such research. But their primary interest is in the sale of seed materials, chemicals, equipment and other inputs produced by them. Knowledge and techniques for resource management are not ‘marketable’ in the same way as those inputs. Their application to land, water and forests has a long gestation and their efficacy depends on resolving difficult problems such as designing institutions for proper and equitable management of common pool resources. Public or quasi-public research institutions informed by broader, long-term concerns can only do such work. The public sector must therefore continue to play a major role in the national research system. It is both wrong and misleading to pose the problem in terms of public sector versus private sector or of privatisation of research. We need to address problems likely to arise on account of the public-private sector complementarity, and ensure that the public research system performs efficiently. Complementarity between various elements of research raises several issues in implementing an IPR regime. Private companies do not produce new varieties and inputs entirely as a result of their own research. Almost all technological improvement is based on knowledge and experience accumulated from the past, and the results of basic and applied research in public and quasi-public institutions (universities, research organisations). Moreover, as is increasingly recognised, accumulated stock of knowledge does not reside only in the scientific community and its academic publications, but is also widely diffused in traditions and folk knowledge of local communities all over. The deciphering of the structure and functioning of DNA forms the basis of much of modern biotechnology. But this fundamental breakthrough is a ‘public good’ freely accessible in the public domain and usable free of any charge. Various techniques developed using that knowledge can however be, and are, patented for private profit. Similarly, private corporations draw extensively, and without any charge, on germplasm available in varieties of plants species (neem and turmeric are by now famous examples). Publicly funded gene banks as well as new varieties bred by public sector research stations can also be used freely by private enterprises for developing their own varieties and seek patent protection for them. Should private breeders be allowed free use of basic scientific discoveries? Should the repositories of traditional knowledge and germplasm be collected which are maintained and improved by publicly funded organisations? Or should users be made to pay for such use? If they are to pay, what should be the basis of compensation? Should the compensation be for individuals or (or communities/institutions to which they belong? Should individual institutions be given the right of patenting their innovations? These are some of the important issues that deserve more attention than they now get and need serious detailed study to evolve reasonably satisfactory, fair and workable solutions. Finally, the tendency to equate the public sector with the government is wrong. The public space is much wider than government departments and includes co- operatives, universities, public trusts and a variety of non-governmental organisations (NGOs). Giving greater autonomy to research organisations from government control and giving non- government public institutions the space and resources to play a larger, more effective role in research, is therefore an issue of direct relevance in restructuring the public research system.Which one of the following statements describes an important issue, or important issues, not being raised in the context of the current debate on IPRs?
 ...
MCQ-> The passage given below is followed by a set of three questions. Choose the most appropriate answer to each question.Every civilized society lives and thrives on a silent but profound agreement as to what is to be accepted as the valid mould of experience. Civilization is a complex system of dams, dykes, and canals warding off, directing, and articulating the influx of the surrounding fluid element; a fertile fenland, elaborately drained and protected from the high tides of chaotic, unexercised, and inarticulate experience. In such a culture, stable and sure of itself within the frontiers of 'naturalized' experience, the arts wield their creative power not so much in width as in depth. They do not create new experience, but deepen and purify the old. Their works do not differ from one another like a new horizon from a new horizon, but like a madonna from a madonna.The periods of art which are most vigorous in creative passion seem to occur when the established pattern of experience loosens its rigidity without as yet losing its force. Such a period was the Renaissance, and Shakespeare its poetic consummation. Then it was as though the discipline of the old order gave depth to the excitement of the breaking away, the depth of job and tragedy, of incomparable conquests and irredeemable losses. Adventurers of experience set out as though in lifeboats to rescue and bring back to the shore treasures of knowing and feeling which the old order had left floating on the high seas. The works of the early Renaissance and the poetry of Shakespeare vibrate with the compassion for live experience in danger of dying from exposure and neglect. In this compassion was the creative genius of the age. Yet, it was a genius of courage, not of desperate audacity. For, however elusively, it still knew of harbours and anchors, of homes to which to return, and of barns in which to store the harvest. The exploring spirit of art was in the depths of its consciousness still aware of a scheme of things into which to fit its exploits and creations. But the more this scheme of things loses its stability, the more boundless and uncharted appears the ocean of potential exploration. In the blank confusion of infinite potentialities flotsam of significance gets attached to jetsam of experience; for everything is sea, everything is at sea - .... The sea is all about us; The sea is the land's edge also, the granite Into which it reaches, the beaches where it tosses Its hints of earlier and other creation ... - and Rilke tells a story in which, as in T.S. Eliot's poem, it is again the sea and the distance of 'other creation' that becomes the image of the poet's reality. A rowing boat sets out on a difficult passage. The oarsmen labour in exact rhythm. There is no sign yet of the destination. Suddenly a man, seemingly idle, breaks out into song. And if the labour of the oarsmen meaninglessly defeats the real resistance of the real waves, it is the idle single who magically conquers the despair of apparent aimlessness. While the people next to him try to come to grips with the element that is next to them, his voice seems to bind the boat to the farthest distance so that the farthest distance draws it towards itself. 'I don't know why and how,' is Rilke's conclusion, 'but suddenly I understood the situation of the poet, his place and function in this age. It does not matter if one denies him every place - except this one. There one must tolerate him.'In the passage, the expression “like a madonna from a madonna” alludes to
 ...
MCQ-> The broad scientific understanding today is that our planet is experiencing a warming trend over and above natural and normal variations that is almost certainly due to human activities associated with large-scale manufacturing. The process began in the late 1700s with the Industrial Revolution, when manual labor, horsepower, and water power began to be replaced by or enhanced by machines. This revolution, over time, shifted Britain, Europe, and eventually North America from largely agricultural and trading societies to manufacturing ones, relying on machinery and engines rather than tools and animals.The Industrial Revolution was at heart a revolution in the use of energy and power. Its beginning is usually dated to the advent of the steam engine, which was based on the conversion of chemical energy in wood or coal to thermal energy and then to mechanical work primarily the powering of industrial machinery and steam locomotives. Coal eventually supplanted wood because, pound for pound, coal contains twice as much energy as wood (measured in BTUs, or British thermal units, per pound) and because its use helped to save what was left of the world's temperate forests. Coal was used to produce heat that went directly into industrial processes, including metallurgy, and to warm buildings, as well as to power steam engines. When crude oil came along in the mid- 1800s, still a couple of decades before electricity, it was burned, in the form of kerosene, in lamps to make light replacing whale oil. It was also used to provide heat for buildings and in manufacturing processes, and as a fuel for engines used in industry and propulsion.In short, one can say that the main forms in which humans need and use energy are for light, heat, mechanical work and motive power, and electricity which can be used to provide any of the other three, as well as to do things that none of those three can do, such as electronic communications and information processing. Since the Industrial Revolution, all these energy functions have been powered primarily, but not exclusively, by fossil fuels that emit carbon dioxide (CO2), To put it another way, the Industrial Revolution gave a whole new prominence to what Rochelle Lefkowitz, president of Pro-Media Communications and an energy buff, calls "fuels from hell" - coal, oil, and natural gas. All these fuels from hell come from underground, are exhaustible, and emit CO2 and other pollutants when they are burned for transportation, heating, and industrial use. These fuels are in contrast to what Lefkowitz calls "fuels from heaven" -wind, hydroelectric, tidal, biomass, and solar power. These all come from above ground, are endlessly renewable, and produce no harmful emissions.Meanwhile, industrialization promoted urbanization, and urbanization eventually gave birth to suburbanization. This trend, which was repeated across America, nurtured the development of the American car culture, the building of a national highway system, and a mushrooming of suburbs around American cities, which rewove the fabric of American life. Many other developed and developing countries followed the American model, with all its upsides and downsides. The result is that today we have suburbs and ribbons of highways that run in, out, and around not only America s major cities, but China's, India's, and South America's as well. And as these urban areas attract more people, the sprawl extends in every direction.All the coal, oil, and natural gas inputs for this new economic model seemed relatively cheap, relatively inexhaustible, and relatively harmless-or at least relatively easy to clean up afterward. So there wasn't much to stop the juggernaut of more people and more development and more concrete and more buildings and more cars and more coal, oil, and gas needed to build and power them. Summing it all up, Andy Karsner, the Department of Energy's assistant secretary for energy efficiency and renewable energy, once said to me: "We built a really inefficient environment with the greatest efficiency ever known to man."Beginning in the second half of the twentieth century, a scientific understanding began to emerge that an excessive accumulation of largely invisible pollutants-called greenhouse gases - was affecting the climate. The buildup of these greenhouse gases had been under way since the start of the Industrial Revolution in a place we could not see and in a form we could not touch or smell. These greenhouse gases, primarily carbon dioxide emitted from human industrial, residential, and transportation sources, were not piling up along roadsides or in rivers, in cans or empty bottles, but, rather, above our heads, in the earth's atmosphere. If the earth's atmosphere was like a blanket that helped to regulate the planet's temperature, the CO2 buildup was having the effect of thickening that blanket and making the globe warmer.Those bags of CO2 from our cars float up and stay in the atmosphere, along with bags of CO2 from power plants burning coal, oil, and gas, and bags of CO2 released from the burning and clearing of forests, which releases all the carbon stored in trees, plants, and soil. In fact, many people don't realize that deforestation in places like Indonesia and Brazil is responsible for more CO2 than all the world's cars, trucks, planes, ships, and trains combined - that is, about 20 percent of all global emissions. And when we're not tossing bags of carbon dioxide into the atmosphere, we're throwing up other greenhouse gases, like methane (CH4) released from rice farming, petroleum drilling, coal mining, animal defecation, solid waste landfill sites, and yes, even from cattle belching. Cattle belching? That's right-the striking thing about greenhouse gases is the diversity of sources that emit them. A herd of cattle belching can be worse than a highway full of Hummers. Livestock gas is very high in methane, which, like CO2, is colorless and odorless. And like CO2, methane is one of those greenhouse gases that, once released into the atmosphere, also absorb heat radiating from the earth's surface. "Molecule for molecule, methane's heat-trapping power in the atmosphere is twenty-one times stronger than carbon dioxide, the most abundant greenhouse gas.." reported Science World (January 21, 2002). “With 1.3 billion cows belching almost constantly around the world (100 million in the United States alone), it's no surprise that methane released by livestock is one of the chief global sources of the gas, according to the U.S. Environmental Protection Agency ... 'It's part of their normal digestion process,' says Tom Wirth of the EPA. 'When they chew their cud, they regurgitate [spit up] some food to rechew it, and all this gas comes out.' The average cow expels 600 liters of methane a day, climate researchers report." What is the precise scientific relationship between these expanded greenhouse gas emissions and global warming? Experts at the Pew Center on Climate Change offer a handy summary in their report "Climate Change 101. " Global average temperatures, notes the Pew study, "have experienced natural shifts throughout human history. For example; the climate of the Northern Hemisphere varied from a relatively warm period between the eleventh and fifteenth centuries to a period of cooler temperatures between the seventeenth century and the middle of the nineteenth century. However, scientists studying the rapid rise in global temperatures during the late twentieth century say that natural variability cannot account for what is happening now." The new factor is the human factor-our vastly increased emissions of carbon dioxide and other greenhouse gases from the burning of fossil fuels such as coal and oil as well as from deforestation, large-scale cattle-grazing, agriculture, and industrialization.“Scientists refer to what has been happening in the earth’s atmosphere over the past century as the ‘enhanced greenhouse effect’”, notes the Pew study. By pumping man- made greenhouse gases into the atmosphere, humans are altering the process by which naturally occurring greenhouse gases, because of their unique molecular structure, trap the sun’s heat near the earth’s surface before that heat radiates back into space."The greenhouse effect keeps the earth warm and habitable; without it, the earth's surface would be about 60 degrees Fahrenheit colder on average. Since the average temperature of the earth is about 45 degrees Fahrenheit, the natural greenhouse effect is clearly a good thing. But the enhanced greenhouse effect means even more of the sun's heat is trapped, causing global temperatures to rise. Among the many scientific studies providing clear evidence that an enhanced greenhouse effect is under way was a 2005 report from NASA's Goddard Institute for Space Studies. Using satellites, data from buoys, and computer models to study the earth's oceans, scientists concluded that more energy is being absorbed from the sun than is emitted back to space, throwing the earth's energy out of balance and warming the globe."Which of the following statements is correct? (I) Greenhouse gases are responsible for global warming. They should be eliminated to save the planet (II) CO2 is the most dangerous of the greenhouse gases. Reduction in the release of CO2 would surely bring down the temperature (III) The greenhouse effect could be traced back to the industrial revolution. But the current development and the patterns of life have enhanced their emissions (IV) Deforestation has been one of the biggest factors contributing to the emission of greenhouse gases Choose the correct option:...
MCQ-> A passage is given with five questions following it. Read the passage carefully and select the best answer to each question out of the given four alternatives.Superstitions are a universal phenomena having their own peculiar place in the cultural ethos and milieu of a people. They epitomize man's fear of the unknown, fear of evil, blind faith in omens and portents. Superstitions are inter-woven with myth, legend, unnatural phenomena and disaster, customs and traditions, and are mainly the outcome of ignorance. They are unreasoned and irrational beliefs that gradually become matters of faith. When certain things and happenings are rationally inexplicable people tend to assign mysterious and supernatural reasons for their operation. Thus a natural disaster is explained in terms of God's wrath and the failure of one's project is assigned to the black cat which crossed the path just as one set out on the errand. The primitive human beings were mainly governed by superstitions. Superstitions were widespread before the dawn of civilization when science had not advanced. Thus, ignorance of the primitive people and the resultant growth of superstitions were the direct outcome of the lack of scientific advancement. Unenlightened people always tend to be superstitious. The belief in the sanctity of time and old traditions of the ancestors bind the people into knots of superstitious thought. Besides, the unscrupulous priests and religious officials exercise a dominating, unhealthy effect upon the people believing in religious orthodoxy. They encourage superstitions for their own ulterior motives. Superstitions are not only universally prevalent but even have strikingly common features whether believed in India or in as far off a place as Canada. There are some common superstitions which are shared by people all over the world. Beliefs in spirits, ghosts and witches and reincarnation are quite common among all the peoples of the world. Belief in witches still prevails in India, France, Scotland, England and many other countries. In countries of the East, especially in India, belief in ghosts and spirits still exists. The cries of certain birds like owls and ravens and the howl of cats are regarded with superstition as portents of evil throughout the world. Then there is a very common belief that the sighting of comets portends the death of kings or great men or some unforeseen catastrophe. Shakespeare refers to such a superstition in his Julius Ceaser, Halley's Comet in the twentieth century evoked a similar response in many a mind.What is the main reason behind once superstitions?
 ...
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions