1. Besides water and light which is more essential as a raw material for photosynthesis?

Answer: CO2

Reply

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->Besides water and light which is more essential as a raw material for photosynthesis?....
QA->Which gase is essential for photosynthesis process?....
QA->In which industry is mica used as a raw material?....
QA->In November 2009, more than 50 employees of a nuclear plant of India were affected due to high radiation levels. A water cooler for supplying water for the employees was contaminated with tritiated water. Where is that nuclear plant?....
QA->Which synthetic fibre used coal, water and air as its raw materials?....
MCQ-> Read the following passage carefully and answer the questions given below it. Certain words/phrases have been given in bold to help you locate them while answering some of the questions: In every religion, culture and civilization feeding the poor and hungry is considered one of the most noble deeds. However such large scale feeding will require huge investment both in resources and time. A better alternative is to create conditions by which proper wholesome food is available to all the rural poor at affordable price. Getting this done will be the biggest charity.Our work with the rural poor in villages of Western Maharashtra has shown that most of these people are landless laborers. After working the whole day in the fields in scorching sun they come home in the evening and have to cook for the whole family. The cooking is done on the most primitive chulha (wood stove) which results in tremendous indoor air pollution. Many of them also have no electricity so they use primitive and polluting kerosene lamps. World Health Organization (WHO) data has shown that about 300,000 deaths/ year in India can be directly attributed to indoor air pollution in such -nuts. At the same time this pollution results in many respiratory ailments and these people spend close Rs. 200-400 per month on medical bills. Besides the pollution, rural poor also eat very poor diet. They eat  whatever is available daily at Public Distribution System (PDS) shops and most of the times these shops are out of rations. Thus they cook whatever is available. The hard work together with poor eating takes a heavy toll on their health. Besides this malnutrition also affects the physical and mental health of their children and may lead to creation of a whole generation of mentally challenged citizens. So I feel that the best way to provide adequate food for rural poor is by setting up rural restaurants on large scale. These restaurants will be similar to regular ones but for people below poverty line (BPL) they will provide meals at subsidized rates. These citizens will pay only Rs. 10 per meal and the rest, which is expected to be quite small, will come as a part of Government subsidy. With existing open market prices of vegetables and groceries average cost of simple meal for a family of four comes to Rs. 50 per meal or Rs. 12.50 per person per meal. If the PDS prices are taken for the groceries then the average cost will be Rs. 7.50 per person per meal. This makes the subsidy approximately Rs. 2.50 per person per meal only and hence quite small. The buying of meals could be by the use of UID (Aadhar) card by rural poor. The total cost should be Rs. 30 per day for three vegetarian meals of breakfast, lunch and dinner. The rural poor will get better nutrition and tasty food by eating  in these restaurants. Besides the time saved can be used for resting and other gainful activities like teaching children. Since the food will not be cooked in huts, this strategy will result in less pollution in rural households. This will be beneficial for their health. Besides, women's chores will be reduced drastically. Another advantage of eating in these restaurants will be increased social interaction of rural poor since this could also become a meeting place. Eating in restaurants will also require fewer utensils in house and hence less expenditure. For other things like hot water for bath, making tea, boiling milk and cooking on holidays some utensils and fuel will be required. Our Institute NARI has developed an extremely efficient and environment-friendly stove which provides simultaneously both light and heat for cooking and hence may provide the necessary functions. Providing reasonably priced wholesome food is the basic aim and program of Government of India (GOI). This is the basis of their much touted food security  program.However in 65years they have not been able to do so. Thus I feel a public private partnership can help in this. To help the restaurant owners the GOI or state Governments should provide them with soft loans and other line of credit for setting up such facilities. Corporate world can take this up as a part of their corporate social responsibility activity. Their participation will help ensure good quality restaurants and services. Besides the charitable work, this will also make good business sense. McDonald's-type restaurant systems for rural areas can be a good model to be set up for quality control both in terms of hygiene and in terms of quality of food material. However focus will be on availability of wholesome simple vegetarian food in these restaurants.More clientele (volumes) will make these restaurants economical. Existing models of dhabas, udipi type restaurants etc. can be used in this scheme. These restaurants may also be able to provide midday meals in rural schools. At present the midday meal program is faltering due to various reasons. Food coupons in western countries provide cheap food for poor. However quite a number of fast food restaurants in US do not accept them. Besides these coupons are most of the times used for non-food items, it will be mandatory for rural restaurants to accept payment via UID cards for BPL citizens. Existing soup kitchens, lagers and temple food are based on charity. For large scale rural use it should be based on good social enterprise  business model. Cooking food in these restaurants will also result in much more efficient use of energy since energy/ kg of food cooked in households is greater than that in restaurants. The main thing however will be to reduce drastically the food wastage In these restaurants. Rural restaurants can also be forced to use clean fuels like LPG or locally produced biomass-based liquid fuels. This strategy is very difficult to enforce for individual households. Large scale employment generation in rural areas may result because of this activity. With an average norm of 30 people employed/ 100-chair restaurant, this program has the potential of generating about 20 million jobs permanently in rural areas. Besides the infrastructure development in setting up restaurants and establishing the food chain etc will help the local farmers and will create huge wealth generation in these areas. In the long run this strategy may provide better food security for rural poor than the existing one which is based on cheap food availability in PDS - a system which is prone to corruption and leakage.In accordance with the view expressed by the writer of this article, what is the biggest charity ?
 ...
MCQ-> The broad scientific understanding today is that our planet is experiencing a warming trend over and above natural and normal variations that is almost certainly due to human activities associated with large-scale manufacturing. The process began in the late 1700s with the Industrial Revolution, when manual labor, horsepower, and water power began to be replaced by or enhanced by machines. This revolution, over time, shifted Britain, Europe, and eventually North America from largely agricultural and trading societies to manufacturing ones, relying on machinery and engines rather than tools and animals.The Industrial Revolution was at heart a revolution in the use of energy and power. Its beginning is usually dated to the advent of the steam engine, which was based on the conversion of chemical energy in wood or coal to thermal energy and then to mechanical work primarily the powering of industrial machinery and steam locomotives. Coal eventually supplanted wood because, pound for pound, coal contains twice as much energy as wood (measured in BTUs, or British thermal units, per pound) and because its use helped to save what was left of the world's temperate forests. Coal was used to produce heat that went directly into industrial processes, including metallurgy, and to warm buildings, as well as to power steam engines. When crude oil came along in the mid- 1800s, still a couple of decades before electricity, it was burned, in the form of kerosene, in lamps to make light replacing whale oil. It was also used to provide heat for buildings and in manufacturing processes, and as a fuel for engines used in industry and propulsion.In short, one can say that the main forms in which humans need and use energy are for light, heat, mechanical work and motive power, and electricity which can be used to provide any of the other three, as well as to do things that none of those three can do, such as electronic communications and information processing. Since the Industrial Revolution, all these energy functions have been powered primarily, but not exclusively, by fossil fuels that emit carbon dioxide (CO2), To put it another way, the Industrial Revolution gave a whole new prominence to what Rochelle Lefkowitz, president of Pro-Media Communications and an energy buff, calls "fuels from hell" - coal, oil, and natural gas. All these fuels from hell come from underground, are exhaustible, and emit CO2 and other pollutants when they are burned for transportation, heating, and industrial use. These fuels are in contrast to what Lefkowitz calls "fuels from heaven" -wind, hydroelectric, tidal, biomass, and solar power. These all come from above ground, are endlessly renewable, and produce no harmful emissions.Meanwhile, industrialization promoted urbanization, and urbanization eventually gave birth to suburbanization. This trend, which was repeated across America, nurtured the development of the American car culture, the building of a national highway system, and a mushrooming of suburbs around American cities, which rewove the fabric of American life. Many other developed and developing countries followed the American model, with all its upsides and downsides. The result is that today we have suburbs and ribbons of highways that run in, out, and around not only America s major cities, but China's, India's, and South America's as well. And as these urban areas attract more people, the sprawl extends in every direction.All the coal, oil, and natural gas inputs for this new economic model seemed relatively cheap, relatively inexhaustible, and relatively harmless-or at least relatively easy to clean up afterward. So there wasn't much to stop the juggernaut of more people and more development and more concrete and more buildings and more cars and more coal, oil, and gas needed to build and power them. Summing it all up, Andy Karsner, the Department of Energy's assistant secretary for energy efficiency and renewable energy, once said to me: "We built a really inefficient environment with the greatest efficiency ever known to man."Beginning in the second half of the twentieth century, a scientific understanding began to emerge that an excessive accumulation of largely invisible pollutants-called greenhouse gases - was affecting the climate. The buildup of these greenhouse gases had been under way since the start of the Industrial Revolution in a place we could not see and in a form we could not touch or smell. These greenhouse gases, primarily carbon dioxide emitted from human industrial, residential, and transportation sources, were not piling up along roadsides or in rivers, in cans or empty bottles, but, rather, above our heads, in the earth's atmosphere. If the earth's atmosphere was like a blanket that helped to regulate the planet's temperature, the CO2 buildup was having the effect of thickening that blanket and making the globe warmer.Those bags of CO2 from our cars float up and stay in the atmosphere, along with bags of CO2 from power plants burning coal, oil, and gas, and bags of CO2 released from the burning and clearing of forests, which releases all the carbon stored in trees, plants, and soil. In fact, many people don't realize that deforestation in places like Indonesia and Brazil is responsible for more CO2 than all the world's cars, trucks, planes, ships, and trains combined - that is, about 20 percent of all global emissions. And when we're not tossing bags of carbon dioxide into the atmosphere, we're throwing up other greenhouse gases, like methane (CH4) released from rice farming, petroleum drilling, coal mining, animal defecation, solid waste landfill sites, and yes, even from cattle belching. Cattle belching? That's right-the striking thing about greenhouse gases is the diversity of sources that emit them. A herd of cattle belching can be worse than a highway full of Hummers. Livestock gas is very high in methane, which, like CO2, is colorless and odorless. And like CO2, methane is one of those greenhouse gases that, once released into the atmosphere, also absorb heat radiating from the earth's surface. "Molecule for molecule, methane's heat-trapping power in the atmosphere is twenty-one times stronger than carbon dioxide, the most abundant greenhouse gas.." reported Science World (January 21, 2002). “With 1.3 billion cows belching almost constantly around the world (100 million in the United States alone), it's no surprise that methane released by livestock is one of the chief global sources of the gas, according to the U.S. Environmental Protection Agency ... 'It's part of their normal digestion process,' says Tom Wirth of the EPA. 'When they chew their cud, they regurgitate [spit up] some food to rechew it, and all this gas comes out.' The average cow expels 600 liters of methane a day, climate researchers report." What is the precise scientific relationship between these expanded greenhouse gas emissions and global warming? Experts at the Pew Center on Climate Change offer a handy summary in their report "Climate Change 101. " Global average temperatures, notes the Pew study, "have experienced natural shifts throughout human history. For example; the climate of the Northern Hemisphere varied from a relatively warm period between the eleventh and fifteenth centuries to a period of cooler temperatures between the seventeenth century and the middle of the nineteenth century. However, scientists studying the rapid rise in global temperatures during the late twentieth century say that natural variability cannot account for what is happening now." The new factor is the human factor-our vastly increased emissions of carbon dioxide and other greenhouse gases from the burning of fossil fuels such as coal and oil as well as from deforestation, large-scale cattle-grazing, agriculture, and industrialization.“Scientists refer to what has been happening in the earth’s atmosphere over the past century as the ‘enhanced greenhouse effect’”, notes the Pew study. By pumping man- made greenhouse gases into the atmosphere, humans are altering the process by which naturally occurring greenhouse gases, because of their unique molecular structure, trap the sun’s heat near the earth’s surface before that heat radiates back into space."The greenhouse effect keeps the earth warm and habitable; without it, the earth's surface would be about 60 degrees Fahrenheit colder on average. Since the average temperature of the earth is about 45 degrees Fahrenheit, the natural greenhouse effect is clearly a good thing. But the enhanced greenhouse effect means even more of the sun's heat is trapped, causing global temperatures to rise. Among the many scientific studies providing clear evidence that an enhanced greenhouse effect is under way was a 2005 report from NASA's Goddard Institute for Space Studies. Using satellites, data from buoys, and computer models to study the earth's oceans, scientists concluded that more energy is being absorbed from the sun than is emitted back to space, throwing the earth's energy out of balance and warming the globe."Which of the following statements is correct? (I) Greenhouse gases are responsible for global warming. They should be eliminated to save the planet (II) CO2 is the most dangerous of the greenhouse gases. Reduction in the release of CO2 would surely bring down the temperature (III) The greenhouse effect could be traced back to the industrial revolution. But the current development and the patterns of life have enhanced their emissions (IV) Deforestation has been one of the biggest factors contributing to the emission of greenhouse gases Choose the correct option:...
MCQ-> "All raw sugar comes to us this way. You see, it is about the color of maple or brown sugar, but it is not nearly so pure, for it has a great deal of dirt mixed with it when we first get it." "Where does it come from?" inquired Bob."Largely from the plantations of Cuba and Porto Rico. Toward the end of the year we also get raw sugar from Java, and by the time this is refined and ready for the market the new crop from the West Indies comes along. In addition to this we get consignments from the Philippine Islands, the Hawaiian Islands, South America, Formosa, and Egypt. I suppose it is quite unnecessary to tell you young men anything of how the cane is grown; of course you know all that.""I don't believe we do, except in a general way," Bob admitted honestly. "I am ashamed to be so green about a thing at which Dad has been working for years. I don't know why I never asked about it before. I guess I never was interested. I simply took it for granted.""That's the way with most of us," was the superintendent's kindly answer. "We accept many things in the world without actually knowing much about them, and it is not until something brings our ignorance before us that we take the pains to focus our attention and learn about them. So do not be ashamed that you do not know about sugar raising; I didn't  when I was your age. Suppose, then, I give you a little idea of what happens before this raw sugar can come to us.""I wish you would," exclaimed both boys in a breath."Probably in your school geographies you have seen pictures of sugar-cane and know that it is a tall perennial not unlike our Indian corn in appearance; it has broad, flat leaves that sometimes measure as many as three feet in length, and often the stalk itself is twenty feet high. This stalk is jointed like a bamboo pole, the joints being about three inches apart near the roots and increasing in distance the higher one gets from the ground.""How do they plant it?" Bob asked."It can be planted from seed, but this method takes much time and patience; the usual way is to plant it from cuttings, or slips. The first growth from these cuttings is called plant cane; after these are taken off the roots send out ratoons or shoots from which the crop of one or two years, and sometimes longer, is taken. If the soil is not rich and moist replanting is more frequently necessary and in places like Louisiana, where there is annual frost, planting must be done each year. When the cane is ripe it is cut and brought from the field to a central sugar mill, where heavy iron rollers crush from it all the juice. This liquid drips through into troughs from which it is carried to evaporators where the water portion of the sap is eliminated and the juice left; you would be surprised if you were to see this liquid. It looks like nothing so much as the soapy, bluish gray dish-water that is left in the pan after the dishes have been washed.""A tempting picture!" Van exclaimed."I know it. Sugar isn't very attractive during its process of preparation," agreed Mr. Hennessey. "The sweet liquid left after the water has been extracted is then poured into vacuum pans to be boiled until the crystals form in it, after which it is put into whirling machines, called centrifugal machines that separate the dry sugar from the syrup with which it is mixed. This syrup is later boiled into molasses. The sugar is then dried and packed in these burlap sacks such as you see here, or in hogsheads, and shipped to refineries to be cleansed and whitened.""Isn't any of the sugar refined in the places where it grows?" queried Bob."Practically none. Large refining plants are too expensive to be erected everywhere; it therefore seems better that they should be built in our large cities, where the shipping facilities are good not only for receiving sugar in its raw state but for distributing it after it has been refined and is ready for sale. Here, too, machinery can more easily be bought and the business handled with less difficulty." Which one of the following is not a essential condition for setting up sugar refining plants?
 ...
MCQ-> Read the passage carefully and answer the questions given at the end of each passage:We now come to the second part of our journey under the sea. The first ended with the moving scene in the coral cemetery which left a deep impression on my mind. I could no longer content myself with the theory which satisfied Conseil. That worthy fellow persisted in seeing in the Commander of the Nautilus one of those unknown servants who returns mankind contempt for indifference. For him, he was a misunderstood genius who, tired of earth’s deceptions, had taken refuge in this inaccessible medium, where he might follow his instincts freely. To my mind, this explains but one side of Captain Nemo’s character. Indeed, the mystery of that last night during which we had been chained in prison, the sleep, and the precaution so violently taken by the Captain of snatching from my eyes the glass I had raised to sweep the horizon, the mortal wound of the man, due to an unaccountable shock of the Nautilus, all put me on a new track. No; Captain Nemo was not satisfied with shunning man. His formidable apparatus not only suited his instinct of freedom, but perhaps also the design of some terrible retaliation. That day, at noon, the second officer came to take the altitude of the sun. I mounted the platform, and watched the operation. As he was taking observations with the sextant, one of the sailors of the Nautilus (the strong man who had accompanied us on our first submarine excursion to the Island of Crespo) came to clean the glasses of the lantern. I examined the fittings of the apparatus, the strength of which was increased a hundredfold by lenticular rings, placed similar to those in a lighthouse, and which projected their brilliance in a horizontal plane. The electric lamp was combined in such a way as to give its most powerful light. Indeed, it was produced in vacuo, which insured both its steadiness and its intensity. This vacuum economized the graphite points between which the luminous arc was developed - an important point of economy for Captain Nemo, who could not easily have replaced them; and under these conditions their waste was imperceptible. When the Nautilus was ready to continue its submarine journey, I went down to the saloon. The panel was closed, and the course marked direct west. We were furrowing the waters of the Indian Ocean, a vast liquid plain, with a surface of 1,200,000,000 of acres, and whose waters are so clear and transparent that any one leaning over them would turn giddy. The Nautilus usually floated between fifty and a hundred fathoms deep. We went on so for some days. To anyone but myself, who had a great love for the sea, the hours would have seemed long and monotonous; but the daily walks on the platform, when I steeped myself in the reviving air of the ocean, the sight of the rich waters through the windows of the saloon, the books in the library, the compiling of my memoirs, took up all my time, and left me not a moment of ennui or weariness. From the 21 st to the 23 rd of January the Nautilus went at the rate of two hundred and fifty leagues in twenty- four hours, being five hundred and forty miles, or twenty-two miles an hour. If we recognized so many different varieties of fish, it was because, attracted by the electric light, they tried to follow us; the greater part, however, were soon distanced by our speed, though some kept their place in the waters of the Nautilus for a time. The morning of the 24 th , we observed Keeling Island, a coral formation, planted with magnificent cocos, and which had been visited by Mr. Darwin and Captain Fitzroy. The Nautilus skirted the shores of this desert island for a little distance. Soon Keeling Island disappeared from the horizon, and our course was directed to the north- west in the direction of the Indian Peninsula. From Keeling Island our course was slower and more variable, often taking us into great depths. Several times they made use of the inclined planes, which certain internal levers placed obliquely to the waterline. I observed that in the upper regions the water was always colder in the high levels than at the surface of the sea. On the 25th of January the ocean was entirely deserted; the Nautilus passed the day on the surface, beating the waves with its powerful screw and making them rebound to a great height. Three parts of this day I spent on the platform. I watched the sea. Nothing on the horizon till about four o’clock then there was a steamer running west on our counter. Her masts were visible for an instant, but she could not see the Nautilus, being too low in the water. I fancied this steamboat belonged to the P.O. Company, which runs from Ceylon to Sydney, touching at King George’s Point and Melbourne. At five o’clock in the evening, before that fleeting twilight which binds night to day in tropical zones, Conseil and I were astonished by a curious spectacle. It was a shoal of Argonauts travelling along on the surface of the ocean. We could count several hundreds. These graceful molluscs moved backwards by means of their locomotive tube, through which they propelled the water already drawn in. Of their eight tentacles, six were elongated, and stretched out floating on the water, whilst the other two, rolled up flat, were spread to the wing like a light sail. I saw their spiral-shaped and fluted shells, which Cuvier justly compares to an elegant skiff. For nearly an hour the Nautilus floated in the midst of this shoal of molluscs. The next day, 26 th of January, we cut the equator at the eighty-second meridian and entered the northern hemisphere. During the day a formidable troop of sharks accompanied us. They were “cestracio philippi” sharks, with brown backs and whitish bellies, armed with eleven rows of teeth, their throat being marked with a large black spot surrounded with white like an eye. There were also some Isabella sharks, with rounded snouts marked with dark spots. These powerful creatures often hurled themselves at the windows of the saloon with such violence as to make us feel very insecure. But the Nautilus, accelerating her speed, easily left the most rapid of them behind.About seven o’clock in the evening, the Nautilus, half- immersed, was sailing in a sea of milk. At first sight the ocean seemed lactified. Was it the effect of the lunar rays? No; for the moon, scarcely two days old, was still lying hidden under the horizon in the rays of the sun. The whole sky, though lit by the sidereal rays, seemed black by contrast with the whiteness of the waters. Conseil could not believe his eyes, and questioned me as to the cause of this strange phenomenon. Happily I was able to answer him. “It is called a milk sea,” I explained. “A large extent of white waves is often to be seen on the coasts of Amboyna, and in these parts of the sea.”  “But, sir,” said Conseil, “can you tell me what causes such an effect? For I suppose the water is not really turned into milk.”  “No, my boy; and the whiteness which surprises you is caused only by the presence of myriads of luminous little worm, gelatinous and without colour, of the thickness of a hair, and whose length is not more than seven-thousandths of an inch. These insects adhere to one another sometimes for several leagues.” “Several leagues!” exclaimed Conseil. “Yes, my boy; and you need not try to compute the number of these infusoria. You will not be able, for, if I am not mistaken, ships have floated on these milk seas for more than forty miles.” Towards midnight the sea suddenly resumed its usual colour; but behind us, even to the limits of the horizon, the sky reflected the whitened waves, and for a long time seemed impregnated with the vague glimmerings of an aurora borealisFind the TRUE Sentence:
 ...
MCQ-> The current debate on intellectual property rights (IPRs) raises a number of important issues concerning the strategy and policies for building a more dynamic national agricultural research system, the relative roles of public and private sectors, and the role of agribusiness multinational corporations (MNCs). This debate has been stimulated by the international agreement on Trade Related Intellectual Property Rights (TRIPs), negotiated as part of the Uruguay Round. TRIPs, for the first time, seeks to bring innovations in agricultural technology under a new worldwide IPR regime. The agribusiness MNCs (along with pharmaceutical companies) played a leading part in lobbying for such a regime during the Uruguay Round negotiations. The argument was that incentives are necessary to stimulate innovations, and that this calls for a system of patents which gives innovators the sole right to use (or sell/lease the right to use) their innovations for a specified period and protects them against unauthorised copying or use. With strong support of their national governments, they were influential in shaping the agreement on TRIPs, which eventually emerged from the Uruguay Round. The current debate on TRIPs in India - as indeed elsewhere - echoes wider concerns about ‘privatisation’ of research and allowing a free field for MNCs in the sphere of biotechnology and agriculture. The agribusiness corporations, and those with unbounded faith in the power of science to overcome all likely problems, point to the vast potential that new technology holds for solving the problems of hunger, malnutrition and poverty in the world. The exploitation of this potential should be encouraged and this is best done by the private sector for which patents are essential. Some, who do not necessarily accept this optimism, argue that fears of MNC domination are exaggerated and that farmers will accept their products only if they decisively outperform the available alternatives. Those who argue against agreeing to introduce an IPR regime in agriculture and encouraging private sector research are apprehensive that this will work to the disadvantage of farmers by making them more and more dependent on monopolistic MNCs. A different, though related apprehension is that extensive use of hybrids and genetically engineered new varieties might increase the vulnerability of agriculture to outbreaks of pests and diseases. The larger, longer-term consequences of reduced biodiversity that may follow from the use of specially bred varieties are also another cause for concern. Moreover, corporations, driven by the profit motive, will necessarily tend to underplay, if not ignore, potential adverse consequences, especially those which are unknown and which may manifest themselves only over a relatively long period. On the other hand, high-pressure advertising and aggressive sales campaigns by private companies can seduce farmers into accepting varieties without being aware of potential adverse effects and the possibility of disastrous consequences for their livelihood if these varieties happen to fail. There is no provision under the laws, as they now exist, for compensating users against such eventualities. Excessive preoccupation with seeds and seed material has obscured other important issues involved in reviewing the research policy. We need to remind ourselves that improved varieties by themselves are not sufficient for sustained growth of yields. in our own experience, some of the early high yielding varieties (HYVs) of rice and wheat were found susceptible to widespread pest attacks; and some had problems of grain quality. Further research was necessary to solve these problems. This largely successful research was almost entirely done in public research institutions. Of course, it could in principle have been done by private companies, but whether they choose to do so depends crucially on the extent of the loss in market for their original introductions on account of the above factors and whether the companies are financially strong enough to absorb the ‘losses’, invest in research to correct the deficiencies and recover the lost market. Public research, which is not driven by profit, is better placed to take corrective action. Research for improving common pool resource management, maintaining ecological health and ensuring sustainability is both critical and also demanding in terms of technological challenge and resource requirements. As such research is crucial to the impact of new varieties, chemicals and equipment in the farmer’s field, private companies should be interested in such research. But their primary interest is in the sale of seed materials, chemicals, equipment and other inputs produced by them. Knowledge and techniques for resource management are not ‘marketable’ in the same way as those inputs. Their application to land, water and forests has a long gestation and their efficacy depends on resolving difficult problems such as designing institutions for proper and equitable management of common pool resources. Public or quasi-public research institutions informed by broader, long-term concerns can only do such work. The public sector must therefore continue to play a major role in the national research system. It is both wrong and misleading to pose the problem in terms of public sector versus private sector or of privatisation of research. We need to address problems likely to arise on account of the public-private sector complementarity, and ensure that the public research system performs efficiently. Complementarity between various elements of research raises several issues in implementing an IPR regime. Private companies do not produce new varieties and inputs entirely as a result of their own research. Almost all technological improvement is based on knowledge and experience accumulated from the past, and the results of basic and applied research in public and quasi-public institutions (universities, research organisations). Moreover, as is increasingly recognised, accumulated stock of knowledge does not reside only in the scientific community and its academic publications, but is also widely diffused in traditions and folk knowledge of local communities all over. The deciphering of the structure and functioning of DNA forms the basis of much of modern biotechnology. But this fundamental breakthrough is a ‘public good’ freely accessible in the public domain and usable free of any charge. Various techniques developed using that knowledge can however be, and are, patented for private profit. Similarly, private corporations draw extensively, and without any charge, on germplasm available in varieties of plants species (neem and turmeric are by now famous examples). Publicly funded gene banks as well as new varieties bred by public sector research stations can also be used freely by private enterprises for developing their own varieties and seek patent protection for them. Should private breeders be allowed free use of basic scientific discoveries? Should the repositories of traditional knowledge and germplasm be collected which are maintained and improved by publicly funded organisations? Or should users be made to pay for such use? If they are to pay, what should be the basis of compensation? Should the compensation be for individuals or (or communities/institutions to which they belong? Should individual institutions be given the right of patenting their innovations? These are some of the important issues that deserve more attention than they now get and need serious detailed study to evolve reasonably satisfactory, fair and workable solutions. Finally, the tendency to equate the public sector with the government is wrong. The public space is much wider than government departments and includes co- operatives, universities, public trusts and a variety of non-governmental organisations (NGOs). Giving greater autonomy to research organisations from government control and giving non- government public institutions the space and resources to play a larger, more effective role in research, is therefore an issue of direct relevance in restructuring the public research system.Which one of the following statements describes an important issue, or important issues, not being raised in the context of the current debate on IPRs?
 ...
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions