1. From where do the strongest evidence that comets are members of our solar system come?

Answer: Their composition

Reply

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->From where do the strongest evidence that comets are members of our solar system come?....
QA->In which object, the first evidence of water clouds was foundoutside the solar system?....
QA->In a club 70% members read English news papers and 75% members read Malayalam news papers, while 20% do not read both papers. If 325 members read both the news papers, then the total numbers in the club is .........?....
QA->Name the planet similar in size and composition to Earth which has been discovered by astronomers outside of our solar-system?....
QA->WHICH IS THE BRIGHTEST PLANET IN OUR SOLAR SYSTEM....
MCQ-> Read the passage carefully and answer the questions given at the end of each passage:Turning the business involved more than segmenting and pulling out of retail. It also meant maximizing every strength we had in order to boost our profit margins. In re-examining the direct model, we realized that inventory management was not just core strength; it could be an incredible opportunity for us, and one that had not yet been discovered by any of our competitors. In Version 1.0 the direct model, we eliminated the reseller, thereby eliminating the mark-up and the cost of maintaining a store. In Version 1.1, we went one step further to reduce inventory inefficiencies. Traditionally, a long chain of partners was involved in getting a product to the customer. Let’s say you have a factory building a PC we’ll call model #4000. The system is then sent to the distributor, which sends it to the warehouse, which sends it to the dealer, who eventually pushes it on to the consumer by advertising, “I’ve got model #4000. Come and buy it.” If the consumer says, “But I want model #8000,” the dealer replies, “Sorry, I only have model #4000.” Meanwhile, the factory keeps building model #4000s and pushing the inventory into the channel. The result is a glut of model #4000s that nobody wants. Inevitably, someone ends up with too much inventory, and you see big price corrections. The retailer can’t sell it at the suggested retail price, so the manufacturer loses money on price protection (a practice common in our industry of compensating dealers for reductions in suggested selling price). Companies with long, multi-step distribution systems will often fill their distribution channels with products in an attempt to clear out older targets. This dangerous and inefficient practice is called “channel stuffing”. Worst of all, the customer ends up paying for it by purchasing systems that are already out of date Because we were building directly to fill our customers’ orders, we didn’t have finished goods inventory devaluing on a daily basis. Because we aligned our suppliers to deliver components as we used them, we were able to minimize raw material inventory. Reductions in component costs could be passed on to our customers quickly, which made them happier and improved our competitive advantage. It also allowed us to deliver the latest technology to our customers faster than our competitors. The direct model turns conventional manufacturing inside out. Conventional manufacturing, because your plant can’t keep going. But if you don’t know what you need to build because of dramatic changes in demand, you run the risk of ending up with terrific amounts of excess and obsolete inventory. That is not the goal. The concept behind the direct model has nothing to do with stockpiling and everything to do with information. The quality of your information is inversely proportional to the amount of assets required, in this case excess inventory. With less information about customer needs, you need massive amounts of inventory. So, if you have great information – that is, you know exactly what people want and how much - you need that much less inventory. Less inventory, of course, corresponds to less inventory depreciation. In the computer industry, component prices are always falling as suppliers introduce faster chips, bigger disk drives and modems with ever-greater bandwidth. Let’s say that Dell has six days of inventory. Compare that to an indirect competitor who has twenty-five days of inventory with another thirty in their distribution channel. That’s a difference of forty-nine days, and in forty-nine days, the cost of materials will decline about 6 percent. Then there’s the threat of getting stuck with obsolete inventory if you’re caught in a transition to a next- generation product, as we were with those memory chip in 1989. As the product approaches the end of its life, the manufacturer has to worry about whether it has too much in the channel and whether a competitor will dump products, destroying profit margins for everyone. This is a perpetual problem in the computer industry, but with the direct model, we have virtually eliminated it. We know when our customers are ready to move on technologically, and we can get out of the market before its most precarious time. We don’t have to subsidize our losses by charging higher prices for other products. And ultimately, our customer wins. Optimal inventory management really starts with the design process. You want to design the product so that the entire product supply chain, as well as the manufacturing process, is oriented not just for speed but for what we call velocity. Speed means being fast in the first place. Velocity means squeezing time out of every step in the process. Inventory velocity has become a passion for us. To achieve maximum velocity, you have to design your products in a way that covers the largest part of the market with the fewest number of parts. For example, you don’t need nine different disk drives when you can serve 98 percent of the market with only four. We also learned to take into account the variability of the lost cost and high cost components. Systems were reconfigured to allow for a greater variety of low-cost parts and a limited variety of expensive parts. The goal was to decrease the number of components to manage, which increased the velocity, which decreased the risk of inventory depreciation, which increased the overall health of our business system. We were also able to reduce inventory well below the levels anyone thought possible by constantly challenging and surprising ourselves with the result. We had our internal skeptics when we first started pushing for ever-lower levels of inventory. I remember the head of our procurement group telling me that this was like “flying low to the ground 300 knots.” He was worried that we wouldn’t see the trees.In 1993, we had $2.9 billion in sales and $220 million in inventory. Four years later, we posted $12.3 billion in sales and had inventory of $33 million. We’re now down to six days of inventory and we’re starting to measure it in hours instead of days. Once you reduce your inventory while maintaining your growth rate, a significant amount of risk comes from the transition from one generation of product to the next. Without traditional stockpiles of inventory, it is critical to precisely time the discontinuance of the older product line with the ramp-up in customer demand for the newer one. Since we were introducing new products all the time, it became imperative to avoid the huge drag effect from mistakes made during transitions. E&O; – short for “excess and obsolete” - became taboo at Dell. We would debate about whether our E&O; was 30 or 50 cent per PC. Since anything less than $20 per PC is not bad, when you’re down in the cents range, you’re approaching stellar performance.Find out the TRUE statement:
 ...
MCQ->Which is the difference between asteroids and comets? Asteroids are small rocky planetoids, while comets are formed of frozen gases held together by rocky and metallic material. Asteroids are found mostly between the orbits of Jupiter and Mars, while comets are found mostly between Venus and Mercury. Comets show a perceptible glowing tail, while asteroids do not. Which of the statements given above is/are correct?...
MCQ-> Read passage carefully. Answer the questions by selecting the most appropriate option (with reference to the passage). PASSAGE 4While majoring in computer science isn't a requirement to participate in the Second Machine Age, what skills do liberal arts graduates specifically possess to contribute to this brave new world? Another major oversight in the debate has been the failure to appreciate that a good liberal arts education teaches many skills that are not only valuable to the general world of business, but are in fact vital to innovating the next wave of breakthrough tech-driven products and services. Many defenses of the value of a liberal arts education have been launched, of course, with the emphasis being on the acquisition of fundamental thinking and communication skills, such as critical thinking, logical argumentation, and good communication skills. One aspect of liberal arts education that has been strangely neglected in the discussion is the fact that the humanities and social sciences are devoted to the study of human nature and the nature of our communities and larger societies. Students who pursue degrees in the liberal arts disciplines tend to be particularly motivated to investigate what makes us human: how we behave and why we behave as we do. They're driven to explore how our families and our public institutions-such as our schools and legal systems-operate, and could operate better, and how governments and economies work, or as is so often the case, are plagued by dysfunction. These students learn a great deal from their particular courses of study and apply that knowledge to today's issues, the leading problems to be tackled, and various approaches for analyzing and addressing those problems. The greatest opportunities for innovation in the emerging era are in applying evolving technological capabilities to finding better ways to solve human problems like social dysfunction and political corruption; finding ways to better educate children; helping people live healthier and happier lives by altering harmful behaviors; improving our working conditions; discovering better ways to tackle poverty; Improving healthcare and making it more affordable; making our governments more accountable, from the local level up to that of global affairs; and finding optimal ways to incorporate intelligent, nimble machines into our work lives so that we are empowered to do more of the work that we do best, and to let the machines do the rest. Workers with a solid liberal arts education have a strong foundation to build on in pursuing these goals. One of the most immediate needs in technology innovation is to invest products and services with more human qualities. with more sensitivity to human needs and desires. Companies and entrepreneurs that want to succeed today and in the future must learn to consider in all aspects of their product and service creation how they can make use of the new technologies to make them more humane. Still, many other liberal arts disciplines also have much to provide the world of technological innovation. The study of psychology, for example, can help people build products that are more attuned to our emotions and ways of thinking. Experience in Anthropology can additionally help companies understand cultural and individual behavioural factors that should be considered in developing products and in marketing them. As technology allows for more machine intelligence and our lives become increasingly populated by the Internet of things and as the gathering of data about our lives and analysis of it allows for more discoveries about our behaviour, consideration of how new products and services can be crafted for the optimal enhancement of our lives and the nature of our communities, workplaces and governments will be of vital importance. Those products and services developed with the keeneSt sense of how they' can serve our human needs and complement our human talents will have a distinct competitive advantage. Much of the criticism of the liberal arts is based on the false assumption that liberal arts students lack rigor in comparison to those participating in the STEM disciplines and that they are 'soft' and unscientific whereas those who study STEM fields learn the scientific method. In fact the liberal arts teach many methods of rigorous inquiry and analysis, such as close observation and interviewing in ways that hard science adherents don't always appreciate. Many fields have long incorporated the scientific method and other types of data driven scientific inquiry and problem solving. Sociologists have developed sophisticated mathematical models of societal networks. Historians gather voluminous data on centuries-old household expenses, marriage and divorce rates, and the world trade, and use data to conduct statistical analyses, identifying trends and contributing factors to the phenomena they are studying. Linguists have developed high-tech models of the evolution of language, and they've made crucial contributions to the development of one of the technologies behind the rapid advance of automation- natural language processing, whereby computers are able to communicate with the, accuracy and personality of Siri and Alexa. It's also important to debunk the fallacy that liberal arts students who don't study these quantitative analytical methods have no 'hard' or relevant skills. This gets us back to the arguments about the fundamental ways of thinking, inquiring, problem solving and communicating that a liberal arts education teaches.What is the central theme of the passage?
 ...
MCQ-> on the basis of the information given in the following case. Teknik Group of industries had businesses in different sectors ranging from manufacturing, construction, fish farming and hotels. These different businesses operated as semi-independent units managed by the unit level managers. Teknik’s management had an internal consultancy group called as Business Advisory Group (known internally as BAG). The 15 experts in BAG were hired personally by Mr. Teknikwala, the owner of Teknik, who wanted this core group of experts to help his organization grow fast without facing the typical growth hurdles. Most of them were specialists in fields like law, information technology, human resource management, and operations management. Almost all of them had experience spanning decades in the industry. Whenever any of the units faced any significant all units and it represented an extra work for those who were involved. This coordination was required to understand the different work processes and the users’ requirements. This coordination activity was being extensively managed by the old timers as they were familiar with internal processes and people in the different units. An external consultant was also hired for customization and implementation After two months, BAG teams had to fortnightly present their progress to Ms. Teknikwali’s team. In the last meeting Ms. Teknikwali was dissatisfied. She explained her thinking that since ERP impacted every aspect of the business, the roll out had to be done faster. She wanted Mr. Shiv to get the implementation completed ahead of schedule. In the meeting she asked Mr. Shiv to get the people in IT team to be more productive. Not willing to disagree, Mr. Shiv committed to a roll-out schedule of complete ERP system in 6 months instead of earlier decided 14 months. Next day, Mr. Shiv presented the revised project milestone to BAG members. He told them that in order to meet the deadline, the members were expected to work on week-ends till the completion of the project. Along with that, they were also expected to maintain their earlier standards of delivery time and quality for the normal trouble-shooting and internal advisory work. Mr. Shiv also pointed out that anyone whose performance did not meet the expectations would be subjected to formal disciplinary action. The meeting ended without any member commenting on Shiv’s ideas, although Mr. Shiv heard a lot of mumbling in the corridor. Over the week, Shiv noticed that the members seemed to avoid him and he had to make extra effort to get ideas from them. After a fortnight Shiv reviewed the attendance register and found the Mr. Lal, an old time member, had not come during the week-ends and certain decisions were held up due to lack of inputs from Mr. Lal. Mr. Shiv issued a written reprimand to Mr. Lal. He was speechless on receiving the reprimand but kept silent. It has been three days since that incident. Some of the senior members had put in request for transfer to other business units. It was rumoured that four problems, the unit level managers would put up a request for help to BAG. The problems ranged from installation of internal MIS systems, to financial advice related to leasing of equipment, to handling of employee grievances. Over a period of 20 years, Teknik’s revenues grew from 100 crore 10,000 crore with guidance of BAG and due to Mr. Tekinwala’s vision. Given its reputation in the industry, many people wanted to start their careers in BAG. Often young MBAs fresh out of business schools would apply. However their applications used to be rejected by Mr. Teknikwala, who had a preference for people with extensive industry experience. Things changed after the unfortunate demise of Mr. Teknikwala. His daughter Miss. Teknikwali took up the family business. She was an MBA from one of the premier business schools, and was working in a different company when Mr. Tekinwala passed away. She preferred that BAG developed new ideas and therefore inducted freshly graduated MBAs from premier business schools. She personally supervised the recruitment and selection process. Now the entire group constituted of 50 specialists, out of which 35 were the old time members. She also changed the reporting relationships in the BAG group with some of the older members being made to report to the new members. In IT team, Mr. Shiv, a newly recruited MBA, was made in-charge. For the older members it was a shock. However, as most of them were on the verge of retirement, and it would be challenging to search for new jobs while competing with younger professionals, they decided to play along. After one month, all business units were caught up in the ERP fever. This was an idea pushed by Ms. Teknikwali who the need the need to replace the old legacy systems with latest ERP system integrating all the units of Teknik. This was heavily influenced by her experience in the previous where an ERP system was already up and running. Therefore she was not aware of the difference between installing an ERP system and working on an already installed one. The ERP mplementation in Teknik Group required extensive coordination with senior level managers of senior legal experts had agreed to an offer from a law firm. Other senior members would sporadically come in late to work, citing health reasons. Almost all senior members now wanted a weekly work-routine to be prepared and given to them in advance so that they could deliver as per the schedule. This insistence on written communication was a problem as urgent problems or ad-hoc requests could not be foreseen and included. Also normal services to other business units were being unattended to, and there were complaints coming from the unit heads.Which of the following could have been a better response of Mr. Shiv to Ms. Teknikwali’s request to re-schedule the ERP implementation?...
MCQ-> I want to stress this personal helplessness we are all stricken with in the face of a system that has passed beyond our knowledge and control. To bring it nearer home, I propose that we switch off from the big things like empires and their wars to more familiar little things. Take pins for example! I do not know why it is that I so seldom use a pin when my wife cannot get on without boxes of them at hand; but it is so; and I will therefore take pins as being for some reason specially important to women.There was a time when pinmakers would buy the material; shape it; make the head and the point; ornament it; and take it to the market, and sell it and the making required skill in several operations. They not only knew how the thing was done from beginning to end, but could do it all by themselves. But they could not afford to sell you a paper of pins for the farthing. Pins cost so much that a woman's dress allowance was calling pin money.By the end of the 18th century Adam Smith boasted that it took 18 men to make a pin, each man doing a little bit of the job and passing the pin on to the next, and none of them being able to make a whole pin or to buy the materials or to sell it when it was made. The most you could say for them was that at least they had some idea of how it was made, though they could not make it. Now as this meant that they were clearly less capable and knowledgeable men than the old pin-makers, you may ask why Adam Smith boasted of it as a triumph of civilisation when its effect had so clearly a degrading effect. The reason was that by setting each man to do just one little bit of the work and nothing but that, over and over again, he became very quick at it. The men, it is said, could turn out nearly 5000 pins a day each; and thus pins became plentiful and cheap. The country was supposed to be richer because it had more pins, though it had turned capable men into mere machines doing their work without intelligence and being fed by the spare food of the capitalist just as an engine is fed with coals and oil. That was why the poet Goldsmith, who was a farsighted economist as well as a poet, complained that 'wealth accumulates, and men decay'.Nowadays Adam Smith's 18 men are as extinct as the diplodocus. The 18 flesh-and-blood men have been replaced by machines of steel which spout out pins by the hundred million. Even sticking them into pink papers is done by machinery. The result is that with the exception of a few people who design the machines, nobody knows how to make a pin or how a pin is made: that is to say, the modern worker in pin manufacture need not be one-tenth so intelligent, skilful and accomplished as the old pinmaker; and the only compensation we have for this deterioration is that pins are so cheap that a single pin has no expressible value at all. Even with a big profit stuck on to the cost-price you can buy dozens for a farthing; and pins are so recklessly thrown away and wasted that verses have to be written to persuade children (without success) that it is a sin to steal, if even it’s a pin.Many serious thinkers, like John Ruskin and William Morris, have been greatly troubled by this, just as Goldsmith was, and have asked whether we really believe that it is an advance in wealth to lose our skill and degrade our workers for the sake of being able to waste pins by the ton. We shall see later on, when we come to consider the Distribution of Leisure, that the cure for this is not to go back to the old free for higher work than pin-making or the like. But in the meantime the fact remains that the workers are now not able to make anything themselves even in little bits. They are ignorant and helpless, and cannot lift their finger to begin their day's work until it has all been arranged for them by their employer's who themselves do not understand the machines they buy, and simply pay other people to set them going by carrying out the machine maker's directions.The same is true for clothes. Earlier the whole work of making clothes, from the shearing of the sheep to the turning out of the finished and washed garment ready to put on, had to be done in the country by the men and women of the household, especially the women; so that to this day an unmarried woman is called a spinster. Nowadays nothing is left of all this but the sheep shearing; and even that, like the milking of cows, is being done by machinery, as the sewing is. Give a woman a sheep today and ask her to produce a woollen dress for you; and not only will she be quite unable to do it, but you are likely to find that she is not even aware of any connection between sheep and clothes. When she gets her clothes, which she does by buying them at the shop, she knows that there is a difference between wool and cotton and silk, between flannel and merino, perhaps even between stockinet and other wefts; but as to how they are made, or what they are made of, or how they came to be in the shop ready for her to buy, she knows hardly anything. And the shop assistant from whom she buys is no wiser. The people engaged in the making of them know even less; for many of them are too poor to have much choice of materials when they buy their own clothes.Thus the capitalist system has produced an almost universal ignorance of how things are made and done, whilst at the same time it has caused them to be made and done on a gigantic scale. We have to buy books and encyclopaedias to find out what it is we are doing all day; and as the books are written by people who are not doing it, and who get their information from other books, what they tell us is twenty to fifty years out of date knowledge and almost impractical today. And of course most of us are too tired of our work when we come home to want to read about it; what we need is cinema to take our minds off it and feel our imagination.It is a funny place, this word of capitalism, with its astonishing spread of education and enlightenment. There stand the thousands of property owners and the millions of wage workers, none of them able to make anything, none of them knowing what to do until somebody tells them, none of them having the least notion of how it is made that they find people paying them money, and things in the shops to buy with it. And when they travel they are surprised to find that savages and Esquimaux and villagers who have to make everything for themselves are more intelligent and resourceful! The wonder would be if they were anything else. We should die of idiocy through disuse of our mental faculties if we did not fill our heads with romantic nonsense out of illustrated newspapers and novels and plays and films. Such stuff keeps us alive, but it falsifies everything for us so absurdly that it leaves us more or less dangerous lunatics in the real world.Excuse my going on like this; but as I am a writer of books and plays myself, I know the folly and peril of it better than you do. And when I see that this moment of our utmost ignorance and helplessness, delusion and folly, has been stumbled on by the blind forces of capitalism as the moment for giving votes to everybody, so that the few wise women are hopelessly overruled by the thousands whose political minds, as far as they can be said to have any political minds at all, have been formed in the cinema, I realise that I had better stop writing plays for a while to discuss political and social realities in this book with those who are intelligent enough to listen to me.A suitable title to the passage would be
 ...
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions